-
Notifications
You must be signed in to change notification settings - Fork 360
Description
Hi all,
I am trying to train a LearningShapelet model with variable length time-series (refer to https://tslearn.readthedocs.io/en/latest/variablelength.html).
from tslearn.utils import to_time_series_dataset
from tslearn.shapelets import LearningShapelets
X = to_time_series_dataset([[1, 2, 3, 4], [1, 2, 3], [2, 5, 6, 7, 8, 9]])
y = [0, 0, 1]
clf = LearningShapelets(n_shapelets_per_size={3: 1}, verbose=1, max_iter=10)
clf.fit(X, y)
However, I find that the loss turns into 'nan' when training it. Any idea why is this happening?
Thank you.
Epoch 1/10
1/1 [==============================] - 0s 372ms/step - loss: 0.8146 - binary_accuracy: 0.6667 - binary_crossentropy: 0.8146
Epoch 2/10
1/1 [==============================] - 0s 997us/step - loss: nan - binary_accuracy: 0.6667 - binary_crossentropy: nan
Epoch 3/10
1/1 [==============================] - 0s 2ms/step - loss: nan - binary_accuracy: 0.6667 - binary_crossentropy: nan
Epoch 4/10
1/1 [==============================] - 0s 2ms/step - loss: nan - binary_accuracy: 0.6667 - binary_crossentropy: nan
Epoch 5/10
1/1 [==============================] - 0s 2ms/step - loss: nan - binary_accuracy: 0.6667 - binary_crossentropy: nan
Epoch 6/10
1/1 [==============================] - 0s 997us/step - loss: nan - binary_accuracy: 0.6667 - binary_crossentropy: nan
Epoch 7/10
1/1 [==============================] - 0s 997us/step - loss: nan - binary_accuracy: 0.6667 - binary_crossentropy: nan
Epoch 8/10
1/1 [==============================] - 0s 2ms/step - loss: nan - binary_accuracy: 0.6667 - binary_crossentropy: nan
Epoch 9/10
1/1 [==============================] - 0s 998us/step - loss: nan - binary_accuracy: 0.6667 - binary_crossentropy: nan
Epoch 10/10
1/1 [==============================] - 0s 2ms/step - loss: nan - binary_accuracy: 0.6667 - binary_crossentropy: nan