Skip to content

vini2309/deepCNNClassifier

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

deepCNNClassifier project

Developed a CNN application using the VGG 16 architecture and transfer learning to classify images as cats or dogs.

workflow

  1. update config.yaml
  2. update secrets.yaml [optional]
  3. update params.yaml
  4. update the entity
  5. update the configuration manager in src config
  6. update the components
  7. update the pipeline
  8. test run pipeline stage
  9. run tox for testing the package
  10. update the dvc.yaml
  11. run "dvc repo" for running all the stages in pipeline

img

STEP 1: Set the env variable | Get it from dagshub -> remote tab -> mlflow tab

MLFLOW_TRACKING_URI=https://dagshub.com/c17hawke/FSDS_NOV_deepCNNClassifier.mlflow MLFLOW_TRACKING_USERNAME=c17hawke MLFLOW_TRACKING_PASSWORD=<> \

STEP 2: install mlflow

STEP 3: Set remote URI

STEP 4: Use context manager of mlflow to start run and then log metrics, params and model

Sample data for testing- https://raw.githubusercontent.com/c17hawke/raw_data/main/sample_data.zip

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published