Skip to content

[Usage]: KVcache usage for different tasks in batch #10509

@Lukas-123

Description

@Lukas-123

Your current environment

The output of `python collect_env.py`
Collecting environment information...
PyTorch version: N/A
Is debug build: N/A
CUDA used to build PyTorch: N/A
ROCM used to build PyTorch: N/A

OS: Rocky Linux release 8.9 (Green Obsidian) (x86_64)
GCC version: (GCC) 8.5.0 20210514 (Red Hat 8.5.0-20)
Clang version: Could not collect
CMake version: version 3.26.5
Libc version: glibc-2.28

Python version: 3.11.6 | packaged by conda-forge | (main, Oct  3 2023, 10:40:35) [GCC 12.3.0] (64-bit runtime)
Python platform: Linux-4.18.0-513.18.1.el8_9.x86_64-x86_64-with-glibc2.28
Is CUDA available: N/A
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: GPU 0: NVIDIA A40
Nvidia driver version: 550.54.14
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: N/A

CPU:
Architecture:        x86_64
CPU op-mode(s):      32-bit, 64-bit
Byte Order:          Little Endian
CPU(s):              96
On-line CPU(s) list: 0-95
Thread(s) per core:  1
Core(s) per socket:  48
Socket(s):           2
NUMA node(s):        2
Vendor ID:           AuthenticAMD
CPU family:          25
Model:               17
Model name:          AMD EPYC 9454 48-Core Processor
Stepping:            1
CPU MHz:             2750.000
CPU max MHz:         3810.7910
CPU min MHz:         1500.0000
BogoMIPS:            5491.58
Virtualization:      AMD-V
L1d cache:           32K
L1i cache:           32K
L2 cache:            1024K
L3 cache:            32768K
NUMA node0 CPU(s):   0-47
NUMA node1 CPU(s):   48-95
Flags:               fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good amd_lbr_v2 nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx512_bf16 clzero irperf xsaveerptr wbnoinvd amd_ppin cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif x2avic v_spec_ctrl avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid overflow_recov succor smca fsrm flush_l1d

Versions of relevant libraries:
[pip3] numpy==1.24.3
[conda] numpy                     1.24.3          py311h64a7726_0    conda-forge
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: N/A
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    NIC0    NIC1    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      SYS     SYS     7-8     0               N/A
NIC0    SYS      X      SYS
NIC1    SYS     SYS      X 

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_2
  NIC1: mlx5_bond_0

How would you like to use vllm

I want to run inference of a multiple tasks in a batch and log/get the kvcache allocation information (GPU and swapped out CPU cache) for each task.
I'm wondering if there's already a way or which file should I modify to do this.

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    staleOver 90 days of inactivityusageHow to use vllm

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions