-
-
Notifications
You must be signed in to change notification settings - Fork 12.6k
Closed as not planned
Labels
bugSomething isn't workingSomething isn't workingstaleOver 90 days of inactivityOver 90 days of inactivity
Description
Your current environment
The output of `python collect_env.py`
INFO 03-28 11:14:11 [__init__.py:239] Automatically detected platform cuda.
Collecting environment information...
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.35
Python version: 3.12.9 | packaged by Anaconda, Inc. | (main, Feb 6 2025, 18:56:27) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.167.4-microsoft-standard-WSL2-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.1.66
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4060 Laptop GPU
Nvidia driver version: 560.94
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.8.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.8.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.8.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.8.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.8.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.8.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.8.1
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 39 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31
Vendor ID: GenuineIntel
Model name: Intel(R) Core(TM) i9-14900HX
CPU family: 6
Model: 183
Thread(s) per core: 2
Core(s) per socket: 16
Socket(s): 1
Stepping: 1
BogoMIPS: 4838.39
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology tsc_reliable nonstop_tsc cpuid pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves avx_vnni umip waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize flush_l1d arch_capabilities
Virtualization: VT-x
Hypervisor vendor: Microsoft
Virtualization type: full
L1d cache: 768 KiB (16 instances)
L1i cache: 512 KiB (16 instances)
L2 cache: 32 MiB (16 instances)
L3 cache: 36 MiB (1 instance)
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Vulnerable: No microcode
Vulnerability Retbleed: Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.3.0
[pip3] torch==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torchvision==0.21.0
[pip3] transformers==4.50.1
[pip3] triton==3.2.0
[conda] blas 1.0 mkl https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
[conda] cuda-cudart 12.1.105 0 nvidia
[conda] cuda-cupti 12.1.105 0 nvidia
[conda] cuda-libraries 12.1.0 0 nvidia
[conda] cuda-nvrtc 12.1.105 0 nvidia
[conda] cuda-nvtx 12.1.105 0 nvidia
[conda] cuda-opencl 12.8.90 0 nvidia
[conda] cuda-runtime 12.1.0 0 nvidia
[conda] cuda-version 12.8 3 nvidia
[conda] ffmpeg 4.3 hf484d3e_0 pytorch
[conda] libcublas 12.1.0.26 0 nvidia
[conda] libcufft 11.0.2.4 0 nvidia
[conda] libcufile 1.13.1.3 0 nvidia
[conda] libcurand 10.3.9.90 0 nvidia
[conda] libcusolver 11.4.4.55 0 nvidia
[conda] libcusparse 12.0.2.55 0 nvidia
[conda] libjpeg-turbo 2.0.0 h9bf148f_0 pytorch
[conda] libnpp 12.0.2.50 0 nvidia
[conda] libnvjitlink 12.1.105 0 nvidia
[conda] libnvjpeg 12.1.1.14 0 nvidia
[conda] mkl 2023.1.0 h213fc3f_46344 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
[conda] mkl-service 2.4.0 py312h5eee18b_2 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
[conda] mkl_fft 1.3.11 py312h5eee18b_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
[conda] mkl_random 1.2.8 py312h526ad5a_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
[conda] numpy 1.26.4 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi
[conda] pytorch-cuda 12.1 ha16c6d3_6 pytorch
[conda] pytorch-mutex 1.0 cuda pytorch
[conda] pyzmq 26.3.0 pypi_0 pypi
[conda] torch 2.6.0 pypi_0 pypi
[conda] torchaudio 2.6.0 pypi_0 pypi
[conda] torchvision 0.21.0 pypi_0 pypi
[conda] transformers 4.50.1 pypi_0 pypi
[conda] triton 3.2.0 pypi_0 pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.2
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
LD_LIBRARY_PATH=/usr/local/cuda/lib64
NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
I use this command start vllm server
python -m vllm.entrypoints.openai.api_server --model /mnt/f/wsl/ubuntu2204/models/Qwen2.5-0.5B --gpu_memory_utilization=0.99 --max-model-len=2048
and output the following information
INFO 03-28 11:37:50 [__init__.py:239] Automatically detected platform cuda.
INFO 03-28 11:37:52 [api_server.py:981] vLLM API server version 0.8.2
INFO 03-28 11:37:52 [api_server.py:982] args: Namespace(host=None, port=8000, uvicorn_log_level='info', disable_uvicorn_access_log=False, allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key=None, lora_modules=None, prompt_adapters=None, chat_template=None, chat_template_content_format='auto', response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, enable_ssl_refresh=False, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_request_id_headers=False, enable_auto_tool_choice=False, tool_call_parser=None, tool_parser_plugin='', model='/mnt/f/wsl/ubuntu2204/models/Qwen2.5-0.5B', task='auto', tokenizer=None, hf_config_path=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=False, allowed_local_media_path=None, download_dir=None, load_format='auto', config_format=<ConfigFormat.AUTO: 'auto'>, dtype='auto', kv_cache_dtype='auto', max_model_len=2048, guided_decoding_backend='xgrammar', logits_processor_pattern=None, model_impl='auto', distributed_executor_backend=None, pipeline_parallel_size=1, tensor_parallel_size=1, enable_expert_parallel=False, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=None, enable_prefix_caching=None, disable_sliding_window=False, use_v2_block_manager=True, num_lookahead_slots=0, seed=None, swap_space=4, cpu_offload_gb=0, gpu_memory_utilization=0.99, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_partial_prefills=1, max_long_partial_prefills=1, long_prefill_token_threshold=0, max_num_seqs=None, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, hf_overrides=None, enforce_eager=False, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt=None, mm_processor_kwargs=None, disable_mm_preprocessor_cache=False, enable_lora=False, enable_lora_bias=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', num_scheduler_steps=1, use_tqdm_on_load=True, multi_step_stream_outputs=True, scheduler_delay_factor=0.0, enable_chunked_prefill=None, speculative_config=None, speculative_model=None, speculative_model_quantization=None, num_speculative_tokens=None, speculative_disable_mqa_scorer=False, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, disable_logprobs_during_spec_decoding=None, model_loader_extra_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=None, qlora_adapter_name_or_path=None, show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, scheduling_policy='fcfs', scheduler_cls='vllm.core.scheduler.Scheduler', override_neuron_config=None, override_pooler_config=None, compilation_config=None, kv_transfer_config=None, worker_cls='auto', worker_extension_cls='', generation_config='auto', override_generation_config=None, enable_sleep_mode=False, calculate_kv_scales=False, additional_config=None, enable_reasoning=False, reasoning_parser=None, disable_cascade_attn=False, disable_log_requests=False, max_log_len=None, disable_fastapi_docs=False, enable_prompt_tokens_details=False, enable_server_load_tracking=False)
INFO 03-28 11:37:56 [config.py:585] This model supports multiple tasks: {'classify', 'reward', 'generate', 'embed', 'score'}. Defaulting to 'generate'.
INFO 03-28 11:37:56 [config.py:1697] Chunked prefill is enabled with max_num_batched_tokens=2048.
INFO 03-28 11:37:57 [core.py:54] Initializing a V1 LLM engine (v0.8.2) with config: model='/mnt/f/wsl/ubuntu2204/models/Qwen2.5-0.5B', speculative_config=None, tokenizer='/mnt/f/wsl/ubuntu2204/models/Qwen2.5-0.5B', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=2048, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='xgrammar', reasoning_backend=None), observability_config=ObservabilityConfig(show_hidden_metrics=False, otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=None, served_model_name=/mnt/f/wsl/ubuntu2204/models/Qwen2.5-0.5B, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=True, chunked_prefill_enabled=True, use_async_output_proc=True, disable_mm_preprocessor_cache=False, mm_processor_kwargs=None, pooler_config=None, compilation_config={"level":3,"custom_ops":["none"],"splitting_ops":["vllm.unified_attention","vllm.unified_attention_with_output"],"use_inductor":true,"compile_sizes":[],"use_cudagraph":true,"cudagraph_num_of_warmups":1,"cudagraph_capture_sizes":[512,504,496,488,480,472,464,456,448,440,432,424,416,408,400,392,384,376,368,360,352,344,336,328,320,312,304,296,288,280,272,264,256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],"max_capture_size":512}
WARNING 03-28 11:37:58 [utils.py:2321] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0x7ff0f054e390>
[W328 11:38:09.607568369 socket.cpp:204] [c10d] The hostname of the client socket cannot be retrieved. err=-3
[W328 11:38:19.619372363 socket.cpp:204] [c10d] The hostname of the client socket cannot be retrieved. err=-3
INFO 03-28 11:38:20 [parallel_state.py:954] rank 0 in world size 1 is assigned as DP rank 0, PP rank 0, TP rank 0
WARNING 03-28 11:38:20 [interface.py:303] Using 'pin_memory=False' as WSL is detected. This may slow down the performance.
INFO 03-28 11:38:20 [cuda.py:220] Using Flash Attention backend on V1 engine.
INFO 03-28 11:38:20 [gpu_model_runner.py:1174] Starting to load model /mnt/f/wsl/ubuntu2204/models/Qwen2.5-0.5B...
WARNING 03-28 11:38:20 [topk_topp_sampler.py:63] FlashInfer is not available. Falling back to the PyTorch-native implementation of top-p & top-k sampling. For the best performance, please install FlashInfer.
Loading safetensors checkpoint shards: 0% Completed | 0/1 [00:00<?, ?it/s]
Loading safetensors checkpoint shards: 100% Completed | 1/1 [01:50<00:00, 110.35s/it]
Loading safetensors checkpoint shards: 100% Completed | 1/1 [01:50<00:00, 110.35s/it]
INFO 03-28 11:40:10 [loader.py:447] Loading weights took 110.39 seconds
INFO 03-28 11:40:10 [gpu_model_runner.py:1186] Model loading took 0.9267 GB and 110.720758 seconds
INFO 03-28 11:40:15 [backends.py:415] Using cache directory: /root/.cache/vllm/torch_compile_cache/872e86e684/rank_0_0 for vLLM's torch.compile
INFO 03-28 11:40:15 [backends.py:425] Dynamo bytecode transform time: 4.83 s
INFO 03-28 11:40:16 [backends.py:115] Directly load the compiled graph for shape None from the cache
INFO 03-28 11:40:19 [monitor.py:33] torch.compile takes 4.83 s in total
INFO 03-28 11:40:20 [kv_cache_utils.py:566] GPU KV cache size: 27,648 tokens
INFO 03-28 11:40:20 [kv_cache_utils.py:569] Maximum concurrency for 2,048 tokens per request: 13.50x
INFO 03-28 11:40:33 [gpu_model_runner.py:1534] Graph capturing finished in 13 secs, took 0.37 GiB
INFO 03-28 11:40:34 [core.py:151] init engine (profile, create kv cache, warmup model) took 23.24 seconds
WARNING 03-28 11:40:34 [config.py:1028] Default sampling parameters have been overridden by the model's Hugging Face generation config recommended from the model creator. If this is not intended, please relaunch vLLM instance with `--generation-config vllm`.
INFO 03-28 11:40:34 [serving_chat.py:115] Using default chat sampling params from model: {'max_tokens': 2048}
INFO 03-28 11:40:34 [serving_completion.py:61] Using default completion sampling params from model: {'max_tokens': 2048}
INFO 03-28 11:40:34 [api_server.py:1028] Starting vLLM API server on http://0.0.0.0:8000/
INFO 03-28 11:40:34 [launcher.py:26] Available routes are:
INFO 03-28 11:40:34 [launcher.py:34] Route: /openapi.json, Methods: HEAD, GET
INFO 03-28 11:40:34 [launcher.py:34] Route: /docs, Methods: HEAD, GET
INFO 03-28 11:40:34 [launcher.py:34] Route: /docs/oauth2-redirect, Methods: HEAD, GET
INFO 03-28 11:40:34 [launcher.py:34] Route: /redoc, Methods: HEAD, GET
INFO 03-28 11:40:34 [launcher.py:34] Route: /health, Methods: GET
INFO 03-28 11:40:34 [launcher.py:34] Route: /load, Methods: GET
INFO 03-28 11:40:34 [launcher.py:34] Route: /ping, Methods: POST, GET
INFO 03-28 11:40:34 [launcher.py:34] Route: /tokenize, Methods: POST
INFO 03-28 11:40:34 [launcher.py:34] Route: /detokenize, Methods: POST
INFO 03-28 11:40:34 [launcher.py:34] Route: /v1/models, Methods: GET
INFO 03-28 11:40:34 [launcher.py:34] Route: /version, Methods: GET
INFO 03-28 11:40:34 [launcher.py:34] Route: /v1/chat/completions, Methods: POST
INFO 03-28 11:40:34 [launcher.py:34] Route: /v1/completions, Methods: POST
INFO 03-28 11:40:34 [launcher.py:34] Route: /v1/embeddings, Methods: POST
INFO 03-28 11:40:34 [launcher.py:34] Route: /pooling, Methods: POST
INFO 03-28 11:40:34 [launcher.py:34] Route: /score, Methods: POST
INFO 03-28 11:40:34 [launcher.py:34] Route: /v1/score, Methods: POST
INFO 03-28 11:40:34 [launcher.py:34] Route: /v1/audio/transcriptions, Methods: POST
INFO 03-28 11:40:34 [launcher.py:34] Route: /rerank, Methods: POST
INFO 03-28 11:40:34 [launcher.py:34] Route: /v1/rerank, Methods: POST
INFO 03-28 11:40:34 [launcher.py:34] Route: /v2/rerank, Methods: POST
INFO 03-28 11:40:34 [launcher.py:34] Route: /invocations, Methods: POST
INFO: Started server process [11540]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO 03-28 11:40:44 [loggers.py:80] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 0.0 tokens/s, Running: 0 reqs, Waiting: 0 reqs, GPU KV cache usage: 0.0%, Prefix cache hit rate: 0.0%
INFO 03-28 11:40:54 [loggers.py:80] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 0.0 tokens/s, Running: 0 reqs, Waiting: 0 reqs, GPU KV cache usage: 0.0%, Prefix cache hit rate: 0.0%At this point I think the server is up and running and can be requested. but i use curl command return Connection timed out
curl http://0.0.0.0:8000/v1/models
curl: (28) Failed to connect to 0.0.0.0 port 8000 after 133149 ms: Connection timed outThe port is indeed occupied
netstat -ano -p TCP
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name Timer
tcp 0 0 127.0.1.1:44742 0.0.0.0:* LISTEN 11746/python off (0.00/0/0)
tcp 0 0 127.0.1.1:45036 0.0.0.0:* LISTEN 11746/python off (0.00/0/0)
tcp 0 0 0.0.0.0:8000 0.0.0.0:* LISTEN 11671/python off (0.00/0/0)
tcp 0 0 127.0.0.53:53 0.0.0.0:* LISTEN 152/systemd-resolve off (0.00/0/0)
tcp 0 0 127.0.1.1:46084 0.0.0.0:* LISTEN 11746/python off (0.00/0/0)
tcp 0 0 127.0.1.1:45644 0.0.0.0:* LISTEN 11746/python off (0.00/0/0)
tcp 0 0 10.255.255.254:53 0.0.0.0:* LISTEN - off (0.00/0/0)
tcp6 0 0 :::45836 :::* LISTEN 11746/python off (0.00/0/0)
tcp6 0 0 192.168.31.64:47319 192.168.31.64:45836 ESTABLISHED 11746/python off (0.00/0/0)
tcp6 0 0 192.168.31.64:45836 192.168.31.64:47319 ESTABLISHED 11746/python off (0.00/0/0)
udp 0 0 127.0.0.53:53 0.0.0.0:* 152/systemd-resolve off (0.00/0/0)
udp 0 0 10.255.255.254:53 0.0.0.0:* - off (0.00/0/0)
udp 0 0 127.0.0.1:323 0.0.0.0:* - off (0.00/0/0)
udp6 0 0 ::1:323 :::* - off (0.00/0/0)So what do I need to do can get vllm server return
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't workingstaleOver 90 days of inactivityOver 90 days of inactivity