Skip to content

[Bug]: OpenAI-Compatible Server cannot be requested #15675

@lihao056

Description

@lihao056

Your current environment

The output of `python collect_env.py`
INFO 03-28 11:14:11 [__init__.py:239] Automatically detected platform cuda.
Collecting environment information...
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.35

Python version: 3.12.9 | packaged by Anaconda, Inc. | (main, Feb  6 2025, 18:56:27) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.167.4-microsoft-standard-WSL2-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.1.66
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4060 Laptop GPU
Nvidia driver version: 560.94
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.8.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.8.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.8.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.8.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.8.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.8.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.8.1
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        39 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               32
On-line CPU(s) list:                  0-31
Vendor ID:                            GenuineIntel
Model name:                           Intel(R) Core(TM) i9-14900HX
CPU family:                           6
Model:                                183
Thread(s) per core:                   2
Core(s) per socket:                   16
Socket(s):                            1
Stepping:                             1
BogoMIPS:                             4838.39
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology tsc_reliable nonstop_tsc cpuid pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves avx_vnni umip waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize flush_l1d arch_capabilities
Virtualization:                       VT-x
Hypervisor vendor:                    Microsoft
Virtualization type:                  full
L1d cache:                            768 KiB (16 instances)
L1i cache:                            512 KiB (16 instances)
L2 cache:                             32 MiB (16 instances)
L3 cache:                             36 MiB (1 instance)
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Vulnerable: No microcode
Vulnerability Retbleed:               Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow:   Not affected
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.3.0
[pip3] torch==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torchvision==0.21.0
[pip3] transformers==4.50.1
[pip3] triton==3.2.0
[conda] blas                      1.0                         mkl    https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
[conda] cuda-cudart               12.1.105                      0    nvidia
[conda] cuda-cupti                12.1.105                      0    nvidia
[conda] cuda-libraries            12.1.0                        0    nvidia
[conda] cuda-nvrtc                12.1.105                      0    nvidia
[conda] cuda-nvtx                 12.1.105                      0    nvidia
[conda] cuda-opencl               12.8.90                       0    nvidia
[conda] cuda-runtime              12.1.0                        0    nvidia
[conda] cuda-version              12.8                          3    nvidia
[conda] ffmpeg                    4.3                  hf484d3e_0    pytorch
[conda] libcublas                 12.1.0.26                     0    nvidia
[conda] libcufft                  11.0.2.4                      0    nvidia
[conda] libcufile                 1.13.1.3                      0    nvidia
[conda] libcurand                 10.3.9.90                     0    nvidia
[conda] libcusolver               11.4.4.55                     0    nvidia
[conda] libcusparse               12.0.2.55                     0    nvidia
[conda] libjpeg-turbo             2.0.0                h9bf148f_0    pytorch
[conda] libnpp                    12.0.2.50                     0    nvidia
[conda] libnvjitlink              12.1.105                      0    nvidia
[conda] libnvjpeg                 12.1.1.14                     0    nvidia
[conda] mkl                       2023.1.0         h213fc3f_46344    https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
[conda] mkl-service               2.4.0           py312h5eee18b_2    https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
[conda] mkl_fft                   1.3.11          py312h5eee18b_0    https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
[conda] mkl_random                1.2.8           py312h526ad5a_0    https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-cublas-cu12        12.4.5.8                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.4.127                 pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.1.0.70                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.2.1.3                 pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.5.147               pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.6.1.9                 pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.3.1.170               pypi_0    pypi
[conda] nvidia-cusparselt-cu12    0.6.2                    pypi_0    pypi
[conda] nvidia-nccl-cu12          2.21.5                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.4.127                 pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.4.127                 pypi_0    pypi
[conda] pytorch-cuda              12.1                 ha16c6d3_6    pytorch
[conda] pytorch-mutex             1.0                        cuda    pytorch
[conda] pyzmq                     26.3.0                   pypi_0    pypi
[conda] torch                     2.6.0                    pypi_0    pypi
[conda] torchaudio                2.6.0                    pypi_0    pypi
[conda] torchvision               0.21.0                   pypi_0    pypi
[conda] transformers              4.50.1                   pypi_0    pypi
[conda] triton                    3.2.0                    pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.2
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X                              N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

LD_LIBRARY_PATH=/usr/local/cuda/lib64
NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

🐛 Describe the bug

I use this command start vllm server

python -m vllm.entrypoints.openai.api_server --model /mnt/f/wsl/ubuntu2204/models/Qwen2.5-0.5B --gpu_memory_utilization=0.99 --max-model-len=2048

and output the following information

INFO 03-28 11:37:50 [__init__.py:239] Automatically detected platform cuda.
INFO 03-28 11:37:52 [api_server.py:981] vLLM API server version 0.8.2
INFO 03-28 11:37:52 [api_server.py:982] args: Namespace(host=None, port=8000, uvicorn_log_level='info', disable_uvicorn_access_log=False, allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key=None, lora_modules=None, prompt_adapters=None, chat_template=None, chat_template_content_format='auto', response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, enable_ssl_refresh=False, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_request_id_headers=False, enable_auto_tool_choice=False, tool_call_parser=None, tool_parser_plugin='', model='/mnt/f/wsl/ubuntu2204/models/Qwen2.5-0.5B', task='auto', tokenizer=None, hf_config_path=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=False, allowed_local_media_path=None, download_dir=None, load_format='auto', config_format=<ConfigFormat.AUTO: 'auto'>, dtype='auto', kv_cache_dtype='auto', max_model_len=2048, guided_decoding_backend='xgrammar', logits_processor_pattern=None, model_impl='auto', distributed_executor_backend=None, pipeline_parallel_size=1, tensor_parallel_size=1, enable_expert_parallel=False, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=None, enable_prefix_caching=None, disable_sliding_window=False, use_v2_block_manager=True, num_lookahead_slots=0, seed=None, swap_space=4, cpu_offload_gb=0, gpu_memory_utilization=0.99, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_partial_prefills=1, max_long_partial_prefills=1, long_prefill_token_threshold=0, max_num_seqs=None, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, hf_overrides=None, enforce_eager=False, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt=None, mm_processor_kwargs=None, disable_mm_preprocessor_cache=False, enable_lora=False, enable_lora_bias=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', num_scheduler_steps=1, use_tqdm_on_load=True, multi_step_stream_outputs=True, scheduler_delay_factor=0.0, enable_chunked_prefill=None, speculative_config=None, speculative_model=None, speculative_model_quantization=None, num_speculative_tokens=None, speculative_disable_mqa_scorer=False, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, disable_logprobs_during_spec_decoding=None, model_loader_extra_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=None, qlora_adapter_name_or_path=None, show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, scheduling_policy='fcfs', scheduler_cls='vllm.core.scheduler.Scheduler', override_neuron_config=None, override_pooler_config=None, compilation_config=None, kv_transfer_config=None, worker_cls='auto', worker_extension_cls='', generation_config='auto', override_generation_config=None, enable_sleep_mode=False, calculate_kv_scales=False, additional_config=None, enable_reasoning=False, reasoning_parser=None, disable_cascade_attn=False, disable_log_requests=False, max_log_len=None, disable_fastapi_docs=False, enable_prompt_tokens_details=False, enable_server_load_tracking=False)
INFO 03-28 11:37:56 [config.py:585] This model supports multiple tasks: {'classify', 'reward', 'generate', 'embed', 'score'}. Defaulting to 'generate'.
INFO 03-28 11:37:56 [config.py:1697] Chunked prefill is enabled with max_num_batched_tokens=2048.
INFO 03-28 11:37:57 [core.py:54] Initializing a V1 LLM engine (v0.8.2) with config: model='/mnt/f/wsl/ubuntu2204/models/Qwen2.5-0.5B', speculative_config=None, tokenizer='/mnt/f/wsl/ubuntu2204/models/Qwen2.5-0.5B', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=2048, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto,  device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='xgrammar', reasoning_backend=None), observability_config=ObservabilityConfig(show_hidden_metrics=False, otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=None, served_model_name=/mnt/f/wsl/ubuntu2204/models/Qwen2.5-0.5B, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=True, chunked_prefill_enabled=True, use_async_output_proc=True, disable_mm_preprocessor_cache=False, mm_processor_kwargs=None, pooler_config=None, compilation_config={"level":3,"custom_ops":["none"],"splitting_ops":["vllm.unified_attention","vllm.unified_attention_with_output"],"use_inductor":true,"compile_sizes":[],"use_cudagraph":true,"cudagraph_num_of_warmups":1,"cudagraph_capture_sizes":[512,504,496,488,480,472,464,456,448,440,432,424,416,408,400,392,384,376,368,360,352,344,336,328,320,312,304,296,288,280,272,264,256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],"max_capture_size":512}
WARNING 03-28 11:37:58 [utils.py:2321] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0x7ff0f054e390>
[W328 11:38:09.607568369 socket.cpp:204] [c10d] The hostname of the client socket cannot be retrieved. err=-3
[W328 11:38:19.619372363 socket.cpp:204] [c10d] The hostname of the client socket cannot be retrieved. err=-3
INFO 03-28 11:38:20 [parallel_state.py:954] rank 0 in world size 1 is assigned as DP rank 0, PP rank 0, TP rank 0
WARNING 03-28 11:38:20 [interface.py:303] Using 'pin_memory=False' as WSL is detected. This may slow down the performance.
INFO 03-28 11:38:20 [cuda.py:220] Using Flash Attention backend on V1 engine.
INFO 03-28 11:38:20 [gpu_model_runner.py:1174] Starting to load model /mnt/f/wsl/ubuntu2204/models/Qwen2.5-0.5B...
WARNING 03-28 11:38:20 [topk_topp_sampler.py:63] FlashInfer is not available. Falling back to the PyTorch-native implementation of top-p & top-k sampling. For the best performance, please install FlashInfer.
Loading safetensors checkpoint shards:   0% Completed | 0/1 [00:00<?, ?it/s]
Loading safetensors checkpoint shards: 100% Completed | 1/1 [01:50<00:00, 110.35s/it]
Loading safetensors checkpoint shards: 100% Completed | 1/1 [01:50<00:00, 110.35s/it]

INFO 03-28 11:40:10 [loader.py:447] Loading weights took 110.39 seconds
INFO 03-28 11:40:10 [gpu_model_runner.py:1186] Model loading took 0.9267 GB and 110.720758 seconds
INFO 03-28 11:40:15 [backends.py:415] Using cache directory: /root/.cache/vllm/torch_compile_cache/872e86e684/rank_0_0 for vLLM's torch.compile
INFO 03-28 11:40:15 [backends.py:425] Dynamo bytecode transform time: 4.83 s
INFO 03-28 11:40:16 [backends.py:115] Directly load the compiled graph for shape None from the cache
INFO 03-28 11:40:19 [monitor.py:33] torch.compile takes 4.83 s in total
INFO 03-28 11:40:20 [kv_cache_utils.py:566] GPU KV cache size: 27,648 tokens
INFO 03-28 11:40:20 [kv_cache_utils.py:569] Maximum concurrency for 2,048 tokens per request: 13.50x
INFO 03-28 11:40:33 [gpu_model_runner.py:1534] Graph capturing finished in 13 secs, took 0.37 GiB
INFO 03-28 11:40:34 [core.py:151] init engine (profile, create kv cache, warmup model) took 23.24 seconds
WARNING 03-28 11:40:34 [config.py:1028] Default sampling parameters have been overridden by the model's Hugging Face generation config recommended from the model creator. If this is not intended, please relaunch vLLM instance with `--generation-config vllm`.
INFO 03-28 11:40:34 [serving_chat.py:115] Using default chat sampling params from model: {'max_tokens': 2048}
INFO 03-28 11:40:34 [serving_completion.py:61] Using default completion sampling params from model: {'max_tokens': 2048}
INFO 03-28 11:40:34 [api_server.py:1028] Starting vLLM API server on http://0.0.0.0:8000/
INFO 03-28 11:40:34 [launcher.py:26] Available routes are:
INFO 03-28 11:40:34 [launcher.py:34] Route: /openapi.json, Methods: HEAD, GET
INFO 03-28 11:40:34 [launcher.py:34] Route: /docs, Methods: HEAD, GET
INFO 03-28 11:40:34 [launcher.py:34] Route: /docs/oauth2-redirect, Methods: HEAD, GET
INFO 03-28 11:40:34 [launcher.py:34] Route: /redoc, Methods: HEAD, GET
INFO 03-28 11:40:34 [launcher.py:34] Route: /health, Methods: GET
INFO 03-28 11:40:34 [launcher.py:34] Route: /load, Methods: GET
INFO 03-28 11:40:34 [launcher.py:34] Route: /ping, Methods: POST, GET
INFO 03-28 11:40:34 [launcher.py:34] Route: /tokenize, Methods: POST
INFO 03-28 11:40:34 [launcher.py:34] Route: /detokenize, Methods: POST
INFO 03-28 11:40:34 [launcher.py:34] Route: /v1/models, Methods: GET
INFO 03-28 11:40:34 [launcher.py:34] Route: /version, Methods: GET
INFO 03-28 11:40:34 [launcher.py:34] Route: /v1/chat/completions, Methods: POST
INFO 03-28 11:40:34 [launcher.py:34] Route: /v1/completions, Methods: POST
INFO 03-28 11:40:34 [launcher.py:34] Route: /v1/embeddings, Methods: POST
INFO 03-28 11:40:34 [launcher.py:34] Route: /pooling, Methods: POST
INFO 03-28 11:40:34 [launcher.py:34] Route: /score, Methods: POST
INFO 03-28 11:40:34 [launcher.py:34] Route: /v1/score, Methods: POST
INFO 03-28 11:40:34 [launcher.py:34] Route: /v1/audio/transcriptions, Methods: POST
INFO 03-28 11:40:34 [launcher.py:34] Route: /rerank, Methods: POST
INFO 03-28 11:40:34 [launcher.py:34] Route: /v1/rerank, Methods: POST
INFO 03-28 11:40:34 [launcher.py:34] Route: /v2/rerank, Methods: POST
INFO 03-28 11:40:34 [launcher.py:34] Route: /invocations, Methods: POST
INFO:     Started server process [11540]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO 03-28 11:40:44 [loggers.py:80] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 0.0 tokens/s, Running: 0 reqs, Waiting: 0 reqs, GPU KV cache usage: 0.0%, Prefix cache hit rate: 0.0%
INFO 03-28 11:40:54 [loggers.py:80] Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 0.0 tokens/s, Running: 0 reqs, Waiting: 0 reqs, GPU KV cache usage: 0.0%, Prefix cache hit rate: 0.0%

At this point I think the server is up and running and can be requested. but i use curl command return Connection timed out

curl http://0.0.0.0:8000/v1/models
curl: (28) Failed to connect to 0.0.0.0 port 8000 after 133149 ms: Connection timed out

The port is indeed occupied

netstat -ano -p TCP
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address           Foreign Address         State       PID/Program name     Timer
tcp        0      0 127.0.1.1:44742         0.0.0.0:*               LISTEN      11746/python         off (0.00/0/0)
tcp        0      0 127.0.1.1:45036         0.0.0.0:*               LISTEN      11746/python         off (0.00/0/0)
tcp        0      0 0.0.0.0:8000            0.0.0.0:*               LISTEN      11671/python         off (0.00/0/0)
tcp        0      0 127.0.0.53:53           0.0.0.0:*               LISTEN      152/systemd-resolve  off (0.00/0/0)
tcp        0      0 127.0.1.1:46084         0.0.0.0:*               LISTEN      11746/python         off (0.00/0/0)
tcp        0      0 127.0.1.1:45644         0.0.0.0:*               LISTEN      11746/python         off (0.00/0/0)
tcp        0      0 10.255.255.254:53       0.0.0.0:*               LISTEN      -                    off (0.00/0/0)
tcp6       0      0 :::45836                :::*                    LISTEN      11746/python         off (0.00/0/0)
tcp6       0      0 192.168.31.64:47319     192.168.31.64:45836     ESTABLISHED 11746/python         off (0.00/0/0)
tcp6       0      0 192.168.31.64:45836     192.168.31.64:47319     ESTABLISHED 11746/python         off (0.00/0/0)
udp        0      0 127.0.0.53:53           0.0.0.0:*                           152/systemd-resolve  off (0.00/0/0)
udp        0      0 10.255.255.254:53       0.0.0.0:*                           -                    off (0.00/0/0)
udp        0      0 127.0.0.1:323           0.0.0.0:*                           -                    off (0.00/0/0)
udp6       0      0 ::1:323                 :::*                                -                    off (0.00/0/0)

So what do I need to do can get vllm server return

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't workingstaleOver 90 days of inactivity

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions