Skip to content

[Bug]: AMD Instinct MI210 + vllm fail to run the official deepseek-r1 model: ValueError("type fp8e4b8 not supported in this architecture. The supported fp8 dtypes are ('fp8e5',)") #16394

@luciaganlulu

Description

@luciaganlulu

Your current environment

The output of `python collect_env.py`
INFO 04-10 07:17:55 [__init__.py:207] Automatically detected platform rocm.
Collecting environment information...
PyTorch version: 2.7.0a0+git6c0e746
Is debug build: False
CUDA used to build PyTorch: N/A
ROCM used to build PyTorch: 6.3.42133-1b9c17779

OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: 18.0.0git (https://github.com/RadeonOpenCompute/llvm-project roc-6.3.1 24491 1e0fda770a2079fbd71e4b70974d74f62fd3af10)
CMake version: version 3.31.4
Libc version: glibc-2.35

Python version: 3.12.9 (main, Feb  5 2025, 08:49:00) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.15.0-136-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: AMD Instinct MI210 (gfx90a:sramecc+:xnack-)
Nvidia driver version: Could not collect
cuDNN version: Could not collect
HIP runtime version: 6.3.42133
MIOpen runtime version: 3.3.0
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        43 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               192
On-line CPU(s) list:                  0-191
Vendor ID:                            AuthenticAMD
Model name:                           AMD EPYC 7K62 48-Core Processor
CPU family:                           23
Model:                                49
Thread(s) per core:                   2
Core(s) per socket:                   48
Socket(s):                            2
Stepping:                             0
Frequency boost:                      enabled
CPU max MHz:                          2600.0000
CPU min MHz:                          1500.0000
BogoMIPS:                             5200.36
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sme sev sev_es
Virtualization:                       AMD-V
L1d cache:                            3 MiB (96 instances)
L1i cache:                            3 MiB (96 instances)
L2 cache:                             48 MiB (96 instances)
L3 cache:                             384 MiB (24 instances)
NUMA node(s):                         2
NUMA node0 CPU(s):                    0-47,96-143
NUMA node1 CPU(s):                    48-95,144-191
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Mitigation; untrained return thunk; SMT enabled with STIBP protection
Vulnerability Spec rstack overflow:   Mitigation; safe RET
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Retpolines; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] pyzmq==26.2.1
[pip3] torch==2.7.0a0+git6c0e746
[pip3] torchvision==0.21.0+7af6987
[pip3] transformers==4.49.0
[pip3] triton==3.2.0+gite5be006a
[conda] Could not collect
ROCM Version: 6.3.42133-1b9c17779
Neuron SDK Version: N/A
vLLM Version: 0.7.4.dev49+gc0dd5adf6
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
============================ ROCm System Management Interface ============================
================================ Weight between two GPUs =================================
       GPU0         GPU1         GPU2         GPU3         GPU4         GPU5         GPU6         GPU7         
GPU0   0            15           15           15           72           72           72           72           
GPU1   15           0            15           15           72           72           72           72           
GPU2   15           15           0            15           72           72           72           72           
GPU3   15           15           15           0            72           72           72           72           
GPU4   72           72           72           72           0            15           15           15           
GPU5   72           72           72           72           15           0            15           15           
GPU6   72           72           72           72           15           15           0            15           
GPU7   72           72           72           72           15           15           15           0            

================================= Hops between two GPUs ==================================
       GPU0         GPU1         GPU2         GPU3         GPU4         GPU5         GPU6         GPU7         
GPU0   0            1            1            1            3            3            3            3            
GPU1   1            0            1            1            3            3            3            3            
GPU2   1            1            0            1            3            3            3            3            
GPU3   1            1            1            0            3            3            3            3            
GPU4   3            3            3            3            0            1            1            1            
GPU5   3            3            3            3            1            0            1            1            
GPU6   3            3            3            3            1            1            0            1            
GPU7   3            3            3            3            1            1            1            0            

=============================== Link Type between two GPUs ===============================
       GPU0         GPU1         GPU2         GPU3         GPU4         GPU5         GPU6         GPU7         
GPU0   0            XGMI         XGMI         XGMI         PCIE         PCIE         PCIE         PCIE         
GPU1   XGMI         0            XGMI         XGMI         PCIE         PCIE         PCIE         PCIE         
GPU2   XGMI         XGMI         0            XGMI         PCIE         PCIE         PCIE         PCIE         
GPU3   XGMI         XGMI         XGMI         0            PCIE         PCIE         PCIE         PCIE         
GPU4   PCIE         PCIE         PCIE         PCIE         0            XGMI         XGMI         XGMI         
GPU5   PCIE         PCIE         PCIE         PCIE         XGMI         0            XGMI         XGMI         
GPU6   PCIE         PCIE         PCIE         PCIE         XGMI         XGMI         0            XGMI         
GPU7   PCIE         PCIE         PCIE         PCIE         XGMI         XGMI         XGMI         0            

======================================= Numa Nodes =======================================
GPU[0]		: (Topology) Numa Node: 0
GPU[0]		: (Topology) Numa Affinity: 0
GPU[1]		: (Topology) Numa Node: 0
GPU[1]		: (Topology) Numa Affinity: 0
GPU[2]		: (Topology) Numa Node: 0
GPU[2]		: (Topology) Numa Affinity: 0
GPU[3]		: (Topology) Numa Node: 0
GPU[3]		: (Topology) Numa Affinity: 0
GPU[4]		: (Topology) Numa Node: 1
GPU[4]		: (Topology) Numa Affinity: 1
GPU[5]		: (Topology) Numa Node: 1
GPU[5]		: (Topology) Numa Affinity: 1
GPU[6]		: (Topology) Numa Node: 1
GPU[6]		: (Topology) Numa Affinity: 1
GPU[7]		: (Topology) Numa Node: 1
GPU[7]		: (Topology) Numa Affinity: 1
================================== End of ROCm SMI Log ===================================

NCCL_P2P_DISABLE=1
NCCL_IB_HCA=mlx5
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
PYTORCH_ROCM_ARCH=gfx90a;gfx942
LD_LIBRARY_PATH=/usr/local/lib/python3.12/dist-packages/cv2/../../lib64:/opt/rocm/lib:/usr/local/lib:
VLLM_HOST_IP=10.41.18.47
NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY


🐛 Describe the bug

I run the deepseek-r1 model on two node with docker+vllm+ray with each node having 8 AMD MI210 gpu cards.

My commands are:

  1. Start a ray cluster on head node: bash run_cluster2.sh vllm-dsr1:v1 $my_ip_head --head /root -e VLLM_HOST_IP=$my_ip_head --privileged -e NCCL_IB_HCA=mlx5 -e CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 -e NCCL_P2P_DISABLE=1

  2. Join the ray cluster on worker node: bash run_cluster2.sh vllm-dsr1:v1 $my_ip_head --worker /root -e VLLM_HOST_IP=$my_ip_worker --privileged -e NCCL_IB_HCA=mlx5 -e CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 -e NCCL_P2P_DISABLE=1

  3. Enter the container via either node: docker exec -it node2 /bin/bash

  4. Run deepseek-r1 model: python -m vllm.entrypoints.openai.api_server --model /models/DeepSeek-R1 --tensor-parallel-size 8 --port 1001 --enforce_eager --distributed-executor-backend ray --pipeline-parallel-size 2 --max-model-len 1024 --max-num-batched-tokens 1024 --trust-remote-code --enable-prefix-caching

After loading all the 163 .safetensors models, it raises the error: ValueError("type fp8e4b8 not supported in this architecture. The supported fp8 dtypes are ('fp8e5',)").

How to solve this problems? Thanks!

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't workingstaleOver 90 days of inactivity

    Type

    No type

    Projects

    Status

    Done

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions