-
-
Notifications
You must be signed in to change notification settings - Fork 12.6k
Description
Your current environment
The output of `python collect_env.py`
INFO 04-10 07:17:55 [__init__.py:207] Automatically detected platform rocm.
Collecting environment information...
PyTorch version: 2.7.0a0+git6c0e746
Is debug build: False
CUDA used to build PyTorch: N/A
ROCM used to build PyTorch: 6.3.42133-1b9c17779
OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: 18.0.0git (https://github.com/RadeonOpenCompute/llvm-project roc-6.3.1 24491 1e0fda770a2079fbd71e4b70974d74f62fd3af10)
CMake version: version 3.31.4
Libc version: glibc-2.35
Python version: 3.12.9 (main, Feb 5 2025, 08:49:00) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.15.0-136-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: AMD Instinct MI210 (gfx90a:sramecc+:xnack-)
Nvidia driver version: Could not collect
cuDNN version: Could not collect
HIP runtime version: 6.3.42133
MIOpen runtime version: 3.3.0
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 43 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 192
On-line CPU(s) list: 0-191
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7K62 48-Core Processor
CPU family: 23
Model: 49
Thread(s) per core: 2
Core(s) per socket: 48
Socket(s): 2
Stepping: 0
Frequency boost: enabled
CPU max MHz: 2600.0000
CPU min MHz: 1500.0000
BogoMIPS: 5200.36
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sme sev sev_es
Virtualization: AMD-V
L1d cache: 3 MiB (96 instances)
L1i cache: 3 MiB (96 instances)
L2 cache: 48 MiB (96 instances)
L3 cache: 384 MiB (24 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-47,96-143
NUMA node1 CPU(s): 48-95,144-191
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection
Vulnerability Spec rstack overflow: Mitigation; safe RET
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] pyzmq==26.2.1
[pip3] torch==2.7.0a0+git6c0e746
[pip3] torchvision==0.21.0+7af6987
[pip3] transformers==4.49.0
[pip3] triton==3.2.0+gite5be006a
[conda] Could not collect
ROCM Version: 6.3.42133-1b9c17779
Neuron SDK Version: N/A
vLLM Version: 0.7.4.dev49+gc0dd5adf6
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
============================ ROCm System Management Interface ============================
================================ Weight between two GPUs =================================
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7
GPU0 0 15 15 15 72 72 72 72
GPU1 15 0 15 15 72 72 72 72
GPU2 15 15 0 15 72 72 72 72
GPU3 15 15 15 0 72 72 72 72
GPU4 72 72 72 72 0 15 15 15
GPU5 72 72 72 72 15 0 15 15
GPU6 72 72 72 72 15 15 0 15
GPU7 72 72 72 72 15 15 15 0
================================= Hops between two GPUs ==================================
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7
GPU0 0 1 1 1 3 3 3 3
GPU1 1 0 1 1 3 3 3 3
GPU2 1 1 0 1 3 3 3 3
GPU3 1 1 1 0 3 3 3 3
GPU4 3 3 3 3 0 1 1 1
GPU5 3 3 3 3 1 0 1 1
GPU6 3 3 3 3 1 1 0 1
GPU7 3 3 3 3 1 1 1 0
=============================== Link Type between two GPUs ===============================
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7
GPU0 0 XGMI XGMI XGMI PCIE PCIE PCIE PCIE
GPU1 XGMI 0 XGMI XGMI PCIE PCIE PCIE PCIE
GPU2 XGMI XGMI 0 XGMI PCIE PCIE PCIE PCIE
GPU3 XGMI XGMI XGMI 0 PCIE PCIE PCIE PCIE
GPU4 PCIE PCIE PCIE PCIE 0 XGMI XGMI XGMI
GPU5 PCIE PCIE PCIE PCIE XGMI 0 XGMI XGMI
GPU6 PCIE PCIE PCIE PCIE XGMI XGMI 0 XGMI
GPU7 PCIE PCIE PCIE PCIE XGMI XGMI XGMI 0
======================================= Numa Nodes =======================================
GPU[0] : (Topology) Numa Node: 0
GPU[0] : (Topology) Numa Affinity: 0
GPU[1] : (Topology) Numa Node: 0
GPU[1] : (Topology) Numa Affinity: 0
GPU[2] : (Topology) Numa Node: 0
GPU[2] : (Topology) Numa Affinity: 0
GPU[3] : (Topology) Numa Node: 0
GPU[3] : (Topology) Numa Affinity: 0
GPU[4] : (Topology) Numa Node: 1
GPU[4] : (Topology) Numa Affinity: 1
GPU[5] : (Topology) Numa Node: 1
GPU[5] : (Topology) Numa Affinity: 1
GPU[6] : (Topology) Numa Node: 1
GPU[6] : (Topology) Numa Affinity: 1
GPU[7] : (Topology) Numa Node: 1
GPU[7] : (Topology) Numa Affinity: 1
================================== End of ROCm SMI Log ===================================
NCCL_P2P_DISABLE=1
NCCL_IB_HCA=mlx5
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
PYTORCH_ROCM_ARCH=gfx90a;gfx942
LD_LIBRARY_PATH=/usr/local/lib/python3.12/dist-packages/cv2/../../lib64:/opt/rocm/lib:/usr/local/lib:
VLLM_HOST_IP=10.41.18.47
NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
I run the deepseek-r1 model on two node with docker+vllm+ray with each node having 8 AMD MI210 gpu cards.
My commands are:
-
Start a ray cluster on head node:
bash run_cluster2.sh vllm-dsr1:v1 $my_ip_head --head /root -e VLLM_HOST_IP=$my_ip_head --privileged -e NCCL_IB_HCA=mlx5 -e CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 -e NCCL_P2P_DISABLE=1 -
Join the ray cluster on worker node:
bash run_cluster2.sh vllm-dsr1:v1 $my_ip_head --worker /root -e VLLM_HOST_IP=$my_ip_worker --privileged -e NCCL_IB_HCA=mlx5 -e CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 -e NCCL_P2P_DISABLE=1 -
Enter the container via either node:
docker exec -it node2 /bin/bash -
Run deepseek-r1 model:
python -m vllm.entrypoints.openai.api_server --model /models/DeepSeek-R1 --tensor-parallel-size 8 --port 1001 --enforce_eager --distributed-executor-backend ray --pipeline-parallel-size 2 --max-model-len 1024 --max-num-batched-tokens 1024 --trust-remote-code --enable-prefix-caching
After loading all the 163 .safetensors models, it raises the error: ValueError("type fp8e4b8 not supported in this architecture. The supported fp8 dtypes are ('fp8e5',)").
How to solve this problems? Thanks!
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
Type
Projects
Status