Skip to content

Conversation

@WoosukKwon
Copy link
Collaborator

No description provided.

@WoosukKwon WoosukKwon requested a review from zhuohan123 June 20, 2023 05:37
Copy link
Member

@zhuohan123 zhuohan123 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM!

@WoosukKwon WoosukKwon merged commit 794e578 into main Jun 20, 2023
@WoosukKwon WoosukKwon deleted the minor-fix-doc branch June 20, 2023 05:57
hongxiayang pushed a commit to hongxiayang/vllm that referenced this pull request Feb 13, 2024
yukavio pushed a commit to yukavio/vllm that referenced this pull request Jul 3, 2024
Using the OpenAI backend of lm-eval (`model="local-completions"`) this
creates a pytest that spins up a vLLM OpenAi server for various models
(Llama, Mistral, Phi 2, Mixtral) and runs gsm8k evals against the server
to compare with known accuracy values. This should be a good test for
making sure accuracies aren't affected for fp16, sparse, and marlin
models as we make releases or upstream syncs. For now, we will leave
this as a manually triggered workflow.

These are the models and evals set up for this PR:
```python
# Each entry in this dictionary holds a model id as the key and an
# EvalDefinition as a value. The EvalDefinition holds a list of Tasks
# to evaluate the models on, each with their own pre-recorded Metrics
MODEL_TEST_POINTS = [
    # Llama 2 7B: FP16, FP16 sparse, marlin
    ("NousResearch/Llama-2-7b-chat-hf",
     EvalDefinition(tasks=[
         Task("gsm8k",
              metrics=[
                  Metric("exact_match,strict-match", 0.2266868840030326),
                  Metric("exact_match,flexible-extract", 0.22820318423047764)
              ])
     ])),
    ("neuralmagic/Llama-2-7b-pruned50-retrained-ultrachat",
     EvalDefinition(tasks=[
         Task("gsm8k",
              metrics=[
                  Metric("exact_match,strict-match", 0.09855951478392722),
                  Metric("exact_match,flexible-extract", 0.10083396512509477)
              ])
     ],
                    extra_args=["--sparsity", "sparse_w16a16"])),
    ("neuralmagic/llama-2-7b-chat-marlin",
     EvalDefinition(tasks=[
         Task("gsm8k",
              metrics=[
                  Metric("exact_match,strict-match", 0.14101592115238817),
                  Metric("exact_match,flexible-extract", 0.1652767247915087)
              ])
     ],
                    enable_tensor_parallel=False)),
    # Mistral 7B: FP16, FP16 sparse, marlin
    ("teknium/OpenHermes-2.5-Mistral-7B",
     EvalDefinition(tasks=[
         Task("gsm8k",
              metrics=[
                  Metric("exact_match,strict-match", 0.6004548900682335),
                  Metric("exact_match,flexible-extract", 0.6482183472327521)
              ])
     ])),
    ("neuralmagic/OpenHermes-2.5-Mistral-7B-pruned50",
     EvalDefinition(tasks=[
         Task("gsm8k",
              metrics=[
                  Metric("exact_match,strict-match", 0.4935557240333586),
                  Metric("exact_match,flexible-extract", 0.5269143290371494)
              ])
     ],
                    extra_args=["--sparsity", "sparse_w16a16"])),
    ("neuralmagic/OpenHermes-2.5-Mistral-7B-marlin",
     EvalDefinition(tasks=[
         Task("gsm8k",
              metrics=[
                  Metric("exact_match,strict-match", 0.4935557240333586),
                  Metric("exact_match,flexible-extract", 0.5868081880212282)
              ])
     ],
                    enable_tensor_parallel=False)),
    # Phi 2: marlin
    ("neuralmagic/phi-2-super-marlin",
     EvalDefinition(tasks=[
         Task("gsm8k",
              metrics=[
                  Metric("exact_match,strict-match", 0.49962092494313876),
                  Metric("exact_match,flexible-extract", 0.5041698256254739)
              ])
     ],
                    enable_tensor_parallel=False)),
    # Mixtral: FP16
    ("mistralai/Mixtral-8x7B-Instruct-v0.1",
     EvalDefinition(tasks=[
         Task("gsm8k",
              metrics=[
                  Metric("exact_match,strict-match", 0.6550416982562547),
                  Metric("exact_match,flexible-extract", 0.6603487490523123)
              ])
     ],
                    enable_tensor_parallel=True)),
]
```
mht-sharma pushed a commit to mht-sharma/vllm that referenced this pull request Oct 30, 2024
…-project#166)

* Miscellaneous changes, Dockerfile components update, remove Cython

* Restore Dockerfile and Cython for now
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants