Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
47 changes: 8 additions & 39 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -50,64 +50,33 @@ A partial documentation is available at: https://mace-docs.readthedocs.io

## Installation

Requirements:
### 1. Requirements:

- Python >= 3.7
- [PyTorch](https://pytorch.org/) >= 1.12 **(training with float64 is not supported with PyTorch 2.1 but is supported with 2.2 and later.)**.
- Python >= 3.7 (for openMM, use Python = 3.9)
- [PyTorch](https://pytorch.org/) >= 1.12 **(training with float64 is not supported with PyTorch 2.1 but is supported with 2.2 and later)**

(for openMM, use Python = 3.9)
**Make sure to install PyTorch.** Please refer to the [official PyTorch installation](https://pytorch.org/get-started/locally/) for the installation instructions. Select the appropriate options for your system.

### pip installation
### 2a. Installation from PyPI
This is the recommended way to install MACE.

**First, make sure to install PyTorch.** Please refer to the [official PyTorch installation](https://pytorch.org/get-started/locally/) for the installation instructions. Select the appropriate options for your system. For GPU installation, make sure to select pip + the appropriate CUDA version for your system. For recent GPUs, the latest cuda version is usually the best choice.

To install via `pip`, follow the steps below:

```sh
pip install --upgrade pip
pip install mace-torch
```
**Note:** The homonymous package on [PyPI](https://pypi.org/project/MACE/) has nothing to do with this one.

For CPU or MPS (Apple Silicon) installation, use `pip install torch torchvision torchaudio` instead.

### conda installation from source

To install from source using `conda`, follow the steps below:
```sh
# Create a virtual environment and activate it
conda create --name mace_env
conda activate mace_env

# Install PyTorch
conda install pytorch torchvision torchaudio pytorch-cuda=11.6 -c pytorch -c nvidia
### 2b. Installation from source

# (optional) Install MACE's dependencies from Conda as well
conda install numpy scipy matplotlib ase opt_einsum prettytable pandas e3nn

# Clone and install MACE (and all required packages)
```sh
git clone https://github.com/ACEsuit/mace.git
pip install ./mace
```
For the Pytorch version, use the appropriate version for your CUDA version.
### pip installation from source

To install via `pip`, follow the steps below:

```sh
# Create a virtual environment and activate it
python -m venv mace-venv
source mace-venv/bin/activate

# Install PyTorch (for example, for CUDA 11.6 [cu116])
pip3 install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118

# Clone and install MACE (and all required packages)
git clone https://github.com/ACEsuit/mace.git
pip install ./mace
```

**Note:** The homonymous package on [PyPI](https://pypi.org/project/MACE/) has nothing to do with this one.

## Usage

Expand Down
2 changes: 1 addition & 1 deletion mace/__version__.py
Original file line number Diff line number Diff line change
@@ -1 +1 @@
__version__ = "0.3.5"
__version__ = "0.3.6"
4 changes: 2 additions & 2 deletions mace/calculators/foundations_models.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
import os
import urllib.request
from pathlib import Path
from typing import Literal, Union
from typing import Union

import torch
from ase import units
Expand All @@ -20,7 +20,7 @@ def mace_mp(
device: str = "",
default_dtype: str = "float32",
dispersion: bool = False,
damping: Literal["zero", "bj", "zerom", "bjm"] = "bj",
damping: str = "bj", # choices: ["zero", "bj", "zerom", "bjm"]
dispersion_xc: str = "pbe",
dispersion_cutoff: float = 40.0 * units.Bohr,
**kwargs,
Expand Down
25 changes: 15 additions & 10 deletions mace/cli/run_train.py
Original file line number Diff line number Diff line change
Expand Up @@ -357,7 +357,10 @@ def run(args: argparse.Namespace) -> None:
if args.loss in ("stress", "virials", "huber", "universal"):
compute_virials = True
args.compute_stress = True
args.error_table = "PerAtomRMSEstressvirials"
if "MAE" in args.error_table:
args.error_table = "PerAtomMAEstressvirials"
else:
args.error_table = "PerAtomRMSEstressvirials"

output_args = {
"energy": compute_energy,
Expand Down Expand Up @@ -585,19 +588,19 @@ def run(args: argparse.Namespace) -> None:
swa: Optional[tools.SWAContainer] = None
swas = [False]
if args.swa:
assert dipole_only is False, "swa for dipole fitting not implemented"
assert dipole_only is False, "Stage Two for dipole fitting not implemented"
swas.append(True)
if args.start_swa is None:
args.start_swa = max(1, args.max_num_epochs // 4 * 3)
else:
if args.start_swa > args.max_num_epochs:
logging.info(
f"Start swa must be less than max_num_epochs, got {args.start_swa} > {args.max_num_epochs}"
f"Start Stage Two must be less than max_num_epochs, got {args.start_swa} > {args.max_num_epochs}"
)
args.start_swa = max(1, args.max_num_epochs // 4 * 3)
logging.info(f"Setting start swa to {args.start_swa}")
logging.info(f"Setting start Stage Two to {args.start_swa}")
if args.loss == "forces_only":
raise ValueError("Can not select swa with forces only loss.")
raise ValueError("Can not select Stage Two with forces only loss.")
if args.loss == "virials":
loss_fn_energy = modules.WeightedEnergyForcesVirialsLoss(
energy_weight=args.swa_energy_weight,
Expand All @@ -617,15 +620,15 @@ def run(args: argparse.Namespace) -> None:
dipole_weight=args.swa_dipole_weight,
)
logging.info(
f"Using stochastic weight averaging (after {args.start_swa} epochs) with energy weight : {args.swa_energy_weight}, forces weight : {args.swa_forces_weight}, dipole weight : {args.swa_dipole_weight} and learning rate : {args.swa_lr}"
f"Stage Two (after {args.start_swa} epochs) with energy weight : {args.swa_energy_weight}, forces weight : {args.swa_forces_weight}, dipole weight : {args.swa_dipole_weight} and learning rate : {args.swa_lr}"
)
else:
loss_fn_energy = modules.WeightedEnergyForcesLoss(
energy_weight=args.swa_energy_weight,
forces_weight=args.swa_forces_weight,
)
logging.info(
f"Using stochastic weight averaging (after {args.start_swa} epochs) with energy weight : {args.swa_energy_weight}, forces weight : {args.swa_forces_weight} and learning rate : {args.swa_lr}"
f"Stage Two (after {args.start_swa} epochs) with energy weight : {args.swa_energy_weight}, forces weight : {args.swa_forces_weight} and learning rate : {args.swa_lr}"
)
swa = tools.SWAContainer(
model=AveragedModel(model),
Expand Down Expand Up @@ -807,7 +810,7 @@ def run(args: argparse.Namespace) -> None:
if rank == 0:
# Save entire model
if swa_eval:
model_path = Path(args.checkpoints_dir) / (tag + "_swa.model")
model_path = Path(args.checkpoints_dir) / (tag + "_stagetwo.model")
else:
model_path = Path(args.checkpoints_dir) / (tag + ".model")
logging.info(f"Saving model to {model_path}")
Expand All @@ -821,10 +824,12 @@ def run(args: argparse.Namespace) -> None:
),
}
if swa_eval:
torch.save(model, Path(args.model_dir) / (args.name + "_swa.model"))
torch.save(
model, Path(args.model_dir) / (args.name + "_stagetwo.model")
)
try:
path_complied = Path(args.model_dir) / (
args.name + "_swa_compiled.model"
args.name + "_stagetwo_compiled.model"
)
logging.info(f"Compiling model, saving metadata {path_complied}")
model_compiled = jit.compile(deepcopy(model))
Expand Down
36 changes: 28 additions & 8 deletions mace/tools/arg_parser.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,6 +80,7 @@ def build_default_arg_parser() -> argparse.ArgumentParser:
"PerAtomRMSE",
"TotalRMSE",
"PerAtomRMSEstressvirials",
"PerAtomMAEstressvirials",
"PerAtomMAE",
"TotalMAE",
"DipoleRMSE",
Expand Down Expand Up @@ -389,45 +390,55 @@ def build_default_arg_parser() -> argparse.ArgumentParser:
)
parser.add_argument(
"--swa_forces_weight",
help="weight of forces loss after starting swa",
"--stage_two_forces_weight",
help="weight of forces loss after starting Stage Two (previously called swa)",
type=float,
default=100.0,
dest="swa_forces_weight",
)
parser.add_argument(
"--energy_weight", help="weight of energy loss", type=float, default=1.0
)
parser.add_argument(
"--swa_energy_weight",
help="weight of energy loss after starting swa",
"--stage_two_energy_weight",
help="weight of energy loss after starting Stage Two (previously called swa)",
type=float,
default=1000.0,
dest="swa_energy_weight",
)
parser.add_argument(
"--virials_weight", help="weight of virials loss", type=float, default=1.0
)
parser.add_argument(
"--swa_virials_weight",
help="weight of virials loss after starting swa",
"--stage_two_virials_weight",
help="weight of virials loss after starting Stage Two (previously called swa)",
type=float,
default=10.0,
dest="swa_virials_weight",
)
parser.add_argument(
"--stress_weight", help="weight of virials loss", type=float, default=1.0
)
parser.add_argument(
"--swa_stress_weight",
help="weight of stress loss after starting swa",
"--stage_two_stress_weight",
help="weight of stress loss after starting Stage Two (previously called swa)",
type=float,
default=10.0,
dest="swa_stress_weight",
)
parser.add_argument(
"--dipole_weight", help="weight of dipoles loss", type=float, default=1.0
)
parser.add_argument(
"--swa_dipole_weight",
help="weight of dipoles after starting swa",
"--stage_two_dipole_weight",
help="weight of dipoles after starting Stage Two (previously called swa)",
type=float,
default=1.0,
dest="swa_dipole_weight",
)
parser.add_argument(
"--config_type_weights",
Expand Down Expand Up @@ -462,7 +473,12 @@ def build_default_arg_parser() -> argparse.ArgumentParser:
"--lr", help="Learning rate of optimizer", type=float, default=0.01
)
parser.add_argument(
"--swa_lr", help="Learning rate of optimizer in swa", type=float, default=1e-3
"--swa_lr",
"--stage_two_lr",
help="Learning rate of optimizer in Stage Two (previously called swa)",
type=float,
default=1e-3,
dest="swa_lr",
)
parser.add_argument(
"--weight_decay", help="weight decay (L2 penalty)", type=float, default=5e-7
Expand Down Expand Up @@ -490,15 +506,19 @@ def build_default_arg_parser() -> argparse.ArgumentParser:
)
parser.add_argument(
"--swa",
help="use Stochastic Weight Averaging, which decreases the learning rate and increases the energy weight at the end of the training to help converge them",
"--stage_two",
help="use Stage Two loss weight, which decreases the learning rate and increases the energy weight at the end of the training to help converge them",
action="store_true",
default=False,
dest="swa",
)
parser.add_argument(
"--start_swa",
help="Number of epochs before switching to swa",
"--start_stage_two",
help="Number of epochs before changing to Stage Two loss weights",
type=int,
default=None,
dest="start_swa",
)
parser.add_argument(
"--ema",
Expand Down
51 changes: 46 additions & 5 deletions mace/tools/scripts_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -304,11 +304,18 @@ def get_atomic_energies(E0s, train_collection, z_table) -> dict:
f"Could not compute average E0s if no training xyz given, error {e} occured"
) from e
else:
try:
atomic_energies_dict = ast.literal_eval(E0s)
assert isinstance(atomic_energies_dict, dict)
except Exception as e:
raise RuntimeError(f"E0s specified invalidly, error {e} occured") from e
if E0s.endswith(".json"):
logging.info(f"Loading atomic energies from {E0s}")
with open(E0s, "r", encoding="utf-8") as f:
atomic_energies_dict = json.load(f)
else:
try:
atomic_energies_dict = ast.literal_eval(E0s)
assert isinstance(atomic_energies_dict, dict)
except Exception as e:
raise RuntimeError(
f"E0s specified invalidly, error {e} occured"
) from e
else:
raise RuntimeError(
"E0s not found in training file and not specified in command line"
Expand Down Expand Up @@ -454,6 +461,14 @@ def create_error_table(
"relative F RMSE %",
"RMSE Stress (Virials) / meV / A (A^3)",
]
elif table_type == "PerAtomMAEstressvirials":
table.field_names = [
"config_type",
"MAE E / meV / atom",
"MAE F / meV / A",
"relative F MAE %",
"MAE Stress (Virials) / meV / A (A^3)",
]
elif table_type == "TotalMAE":
table.field_names = [
"config_type",
Expand Down Expand Up @@ -558,6 +573,32 @@ def create_error_table(
f"{metrics['rmse_virials'] * 1000:.1f}",
]
)
elif (
table_type == "PerAtomMAEstressvirials"
and metrics["mae_stress"] is not None
):
table.add_row(
[
name,
f"{metrics['mae_e_per_atom'] * 1000:.1f}",
f"{metrics['mae_f'] * 1000:.1f}",
f"{metrics['rel_mae_f']:.2f}",
f"{metrics['mae_stress'] * 1000:.1f}",
]
)
elif (
table_type == "PerAtomMAEstressvirials"
and metrics["mae_virials"] is not None
):
table.add_row(
[
name,
f"{metrics['mae_e_per_atom'] * 1000:.1f}",
f"{metrics['mae_f'] * 1000:.1f}",
f"{metrics['rel_mae_f']:.2f}",
f"{metrics['mae_virials'] * 1000:.1f}",
]
)
elif table_type == "TotalMAE":
table.add_row(
[
Expand Down
24 changes: 22 additions & 2 deletions mace/tools/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,6 +71,26 @@ def valid_err_log(valid_loss, eval_metrics, logger, log_errors, epoch=None):
logging.info(
f"Epoch {epoch}: loss={valid_loss:.4f}, RMSE_E_per_atom={error_e:.1f} meV, RMSE_F={error_f:.1f} meV / A, RMSE_virials_per_atom={error_virials:.1f} meV"
)
elif (
log_errors == "PerAtomMAEstressvirials"
and eval_metrics["mae_stress_per_atom"] is not None
):
error_e = eval_metrics["mae_e_per_atom"] * 1e3
error_f = eval_metrics["mae_f"] * 1e3
error_stress = eval_metrics["mae_stress"] * 1e3
logging.info(
f"Epoch {epoch}: loss={valid_loss:.4f}, MAE_E_per_atom={error_e:.1f} meV, MAE_F={error_f:.1f} meV / A, MAE_stress={error_stress:.1f} meV / A^3"
)
elif (
log_errors == "PerAtomMAEstressvirials"
and eval_metrics["mae_virials_per_atom"] is not None
):
error_e = eval_metrics["mae_e_per_atom"] * 1e3
error_f = eval_metrics["mae_f"] * 1e3
error_virials = eval_metrics["mae_virials"] * 1e3
logging.info(
f"Epoch {epoch}: loss={valid_loss:.4f}, MAE_E_per_atom={error_e:.1f} meV, MAE_F={error_f:.1f} meV / A, MAE_virials={error_virials:.1f} meV"
)
elif log_errors == "TotalRMSE":
error_e = eval_metrics["rmse_e"] * 1e3
error_f = eval_metrics["rmse_f"] * 1e3
Expand Down Expand Up @@ -163,7 +183,7 @@ def train(
) # Can break if exponential LR, TODO fix that!
else:
if swa_start:
logging.info("Changing loss based on SWA")
logging.info("Changing loss based on Stage Two Weights")
lowest_loss = np.inf
swa_start = False
keep_last = True
Expand Down Expand Up @@ -233,7 +253,7 @@ def train(
patience_counter += 1
if patience_counter >= patience and epoch < swa.start:
logging.info(
f"Stopping optimization after {patience_counter} epochs without improvement and starting swa"
f"Stopping optimization after {patience_counter} epochs without improvement and starting Stage Two"
)
epoch = swa.start
elif patience_counter >= patience and epoch >= swa.start:
Expand Down
Loading