Skip to content

wangbaoding0816/Laser_Ultrasound_Reconstruction_PINN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

12 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Laser_Ultrasound_Reconstruction_PINN

This repository contains the PyTorch implementation and datasets for the paper: "[Robust Sparse Wavefield Reconstruction and Defect Localization in Low-SNR Laser Ultrasonics Using Physics-Informed Neural Networks]".

We propose a Physics-Informed Neural Network (PINN) framework to reconstruct high-fidelity laser ultrasound signals from low-SNR measurements. The method is validated on both defect-free and defective samples.

πŸ“‚ Repository Structure

.
β”œβ”€β”€ data/
β”‚   β”œβ”€β”€ intact/
β”‚   β”‚   β”œβ”€β”€ low_snr/                # Input: Noisy signals (Intact samples)
β”‚   β”‚   β”‚   └── intact_low_snr.pkl
β”‚   β”‚   └── high_snr_gt/            # Ground Truth: Clean signals (Intact samples)
β”‚   β”‚       └── intact_high_snr_gt.pkl
β”‚   β”œβ”€β”€ damaged/
β”‚   β”‚   β”œβ”€β”€ low_snr/                # Input: Noisy signals (Damaged samples)
β”‚   β”‚   β”‚   └── damaged_low_snr.pkl
β”‚   β”‚   └── high_snr_gt/            # Ground Truth: Clean signals (Damaged samples)
β”‚   β”‚       └── damaged_high_snr_gt.pkl
β”œβ”€β”€ models/                # Saved checkpoints and pre-trained models
β”œβ”€β”€ src/                   # Source code for PINN, loss functions, etc.
β”œβ”€β”€ train.py               # Script to train the PINN
β”œβ”€β”€ evaluate.py            # Script to test and visualize results
β”œβ”€β”€ requirements.txt       # Python dependencies
└── README.md

About

Reconstruction of laser ultrasound signals using Physics-Informed Neural Networks (PINNs)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages