This is the official implementation for our paper:"Evidence-aware Integration and Domain Identification of Spatial Transcriptomics Data" (PREST: PRototype-based Evidence-aware integration framework for Spatial Transcriptomics data)
Please replace the following {dataset_name} with the actual dataset name.
conda create -n PREST python=3.8.20
conda activate PREST
pip install -r requirements.txtTo generate DLPFC data:
- Set the
datasetsvariable ingenerate_data_DLPFC.pyto your target slice number (e.g.,151507) - Execute the generation script:
python generate_data_{dataset_name}.pyDirect execution (no configuration needed):
python generate_data_{dataset_name}.pypython ./pretrain/ae/main.py --name {dataset_name} --lr 1e-3 --epoch 100
python ./pretrain/gae/main.py --name {dataset_name} --lr 1e-3 --epoch 100
python ./main.py --name {dataset_name} --lr 1e-3 --epoch 100 --mode ntrainpython ./main.py --name {dataset_name} --epoch 200You can download the benchmark datasets from the links below:
- DorsoLateral PreFrontal Cortex (DLPFC): LieberInstitute/spatialLIBD: Code for the spatialLIBD R/Bioconductor package and shiny app
- Human Breast Cancer (HBC): Human Breast Cancer (Block A Section 1) - 10x Genomics
- Mouse Anterior Brain (MBA): Mouse Brain Serial Section 1 (Sagittal-Anterior) - 10x Genomics
