Skip to content
/ PREST Public

[AAAI 2026] This is an official implementation for "Evidence-aware Integration and Domain Identification of Spatial Transcriptomics Data".

Notifications You must be signed in to change notification settings

wayc04/PREST

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PREST

This is the official implementation for our paper:"Evidence-aware Integration and Domain Identification of Spatial Transcriptomics Data" (PREST: PRototype-based Evidence-aware integration framework for Spatial Transcriptomics data)


Overview

Overview

Experiments

Please replace the following {dataset_name} with the actual dataset name.

Setup

conda create -n PREST python=3.8.20
conda activate PREST
pip install -r requirements.txt

Data

To generate DLPFC data:

  1. Set the datasets variable in generate_data_DLPFC.py to your target slice number (e.g., 151507)
  2. Execute the generation script:
python generate_data_{dataset_name}.py

For All Other Datasets

Direct execution (no configuration needed):

python generate_data_{dataset_name}.py

Pretrain

python ./pretrain/ae/main.py --name {dataset_name} --lr 1e-3 --epoch 100
python ./pretrain/gae/main.py --name {dataset_name} --lr 1e-3 --epoch 100
python ./main.py --name {dataset_name} --lr 1e-3 --epoch 100 --mode ntrain

Train

python ./main.py --name {dataset_name} --epoch 200

Datasets

You can download the benchmark datasets from the links below:

About

[AAAI 2026] This is an official implementation for "Evidence-aware Integration and Domain Identification of Spatial Transcriptomics Data".

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages