Install dependencies using:
pip install -r requirements.txt- Perform SFT (Supervised Fine-Tuning).
- You can use the
openr1SFT script. - Optionally, reinforcement learning steps can be added.
Edit the parameters in train_step_1.sh before starting training.
The model should be the output from the previous step.
MODEL_NAME_OR_PATH="" # Path to the base model
DATASET_PATH="./dataset/step_1_train_format.json"
OUTPUT_DIR="" # Path to save training outputsStart training with:
bash train_step_1.shEdit the parameters in inference_step_1_dataset.sh:
FILE_PATHS=( path/to/your/files ) # List of input files
model_names=("Ministral-8B-Instruct-2410")
prompt_lengths=(260) # Length used in Step 1.0 trainingRun inference with:
bash inference_step_1_dataset.shEdit the parameters in inference_step_2_dataset.sh:
FILE_PATHS=( path/to/your/files )Run inference with:
bash inference_step_2_dataset.shOther training datasets can be found in the train.zip file.
