Skip to content
/ labml Public
forked from labmlai/labml

πŸ”Ž Monitor deep learning model training and hardware usage from your mobile phone πŸ“±

License

Notifications You must be signed in to change notification settings

xet7/labml

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Monitor deep learning model training and hardware usage from mobile.

PyPI - Python Version PyPI Status Join Slack Docs Twitter

πŸ”₯ Features

  • Monitor running experiments from mobile phone View Run
  • Monitor hardware usage on any computer with a single command
  • Integrate with just 2 lines of code (see examples below)
  • Keeps track of experiments including infomation like git commit, configurations and hyper-parameters
  • Keep Tensorboard logs organized
  • Dashboard to locally browse and manage experiment runs
  • Save and load checkpoints
  • API for custom visualizations Open In Colab Open In Colab
  • Pretty logs of training progress
  • Open source! we also have a small hosted server for the mobile web app

Installation

You can install this package using PIP.

pip install labml

PyTorch example

from labml import tracker, experiment

with experiment.record(name='sample', exp_conf=conf):
    for i in range(50):
        loss, accuracy = train()
        tracker.save(i, {'loss': loss, 'accuracy': accuracy})

PyTorch Lightning example

from labml import experiment
from labml.utils.lightning import LabMLLightningLogger

trainer = pl.Trainer(gpus=1, max_epochs=5, progress_bar_refresh_rate=20, logger=LabMLLightningLogger())

with experiment.record(name='sample', exp_conf=conf, disable_screen=True):
    trainer.fit(model, data_loader)

TensorFlow 2.X Keras example

from labml import experiment
from labml.utils.keras import LabMLKerasCallback

with experiment.record(name='sample', exp_conf=conf):
    for i in range(50):
        model.fit(x_train, y_train, epochs=conf['epochs'], validation_data=(x_test, y_test),
                  callbacks=[LabMLKerasCallback()], verbose=None)
pip install labml psutil py3nvml
labml monitor

πŸ“š Documentation

Guides

πŸ–₯ Screenshots

Formatted training loop output

Sample Logs

Custom visualizations based on Tensorboard logs

Analytics

Citing

If you use LabML for academic research, please cite the library using the following BibTeX entry.

@misc{labml,
 author = {Varuna Jayasiri, Nipun Wijerathne},
 title = {labml.ai: A library to organize machine learning experiments},
 year = {2020},
 url = {https://labml.ai/},
}

About

πŸ”Ž Monitor deep learning model training and hardware usage from your mobile phone πŸ“±

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 85.7%
  • Python 7.3%
  • TypeScript 6.2%
  • SCSS 0.3%
  • JavaScript 0.2%
  • Shell 0.1%
  • Other 0.2%