-
Notifications
You must be signed in to change notification settings - Fork 942
Description
I am a noooooob on TFOS and here is the question i met
hope some guy can help me to slove it .thank you first!
i got stuck when i submitted the spark task.I used spark standalone mode and here is my configurations :
hadoop-2.6.5
spark-2.2.0 for hadoop-2.6
jdk1.8.0
tensorflow1.5.0rc0
tensorflowonspark (1.1.0)
i have two PC with ubuntu16.04 LST system and one of them is the Master (namenode && datanode) and also a slaver (worker) and the other one is the slaver
before i got stuck i successfully run that csv convert program,and i got image folder and lable forlder on my hdfs system.(which was done by my two slaver,when that program ran(mnist_data_setup.py)) it showed that TFOS assigned tasks to executor 0(ip .158 which is Master ) and executor 1(ip .159 which is Slaver )
i thought that message show that my Hadoop+Spark +Tensorflow is ok
but when i go on to train the MNIST it stuck ? And what i submit is refer to many blogs or question solutions , nut none of them work for me ;(
here is the submit :
export PYTHON_ROOT=/usr/bin/python
export LD_LIBRARY_PATH=${PATH}
export PYSPARK_PYTHON=/usr/bin/python
export SPARK_YARN_USER_ENV="PYSPARK_PYTHON=/usr/bin/python"
export PATH=${PYTHON_ROOT}/bin/:$PATH
export QUEUE=default
export LIB_HDFS=$HADOOP_PREFIX/lib/native/Linux-amd64-64
export LIB_JVM=$JAVA_HOME/jre/lib/amd64/server
export MASTER=${MASTER}
export SPARK_WORKER_INSTANCES=2
export CORES_PER_WORKER=1
export TOTAL_CORES=$((${CORES_PER_WORKER}*${SPARK_WORKER_INSTANCES}))
${SPARK_HOME}/sbin/start-master.sh; ${SPARK_HOME}/sbin/start-slaves.sh -c
(BTW, the official document of standalone TFOS may have a mistake, when start the spark it submit "start-slave.sh", it will lead to start 2 Worker on master,but no Worker on Slaver ."start-slaves.sh" will start slaver correctly )
(it may also my mistake cause the question above but "start-salves,sh" work for me)
${SPARK_HOME}/bin/spark-submit
--master=spark://master:7077
--conf spark.executorEnv.LD_LIBRARY_PATH="${JAVA_HOME}/jre/lib/amd64/server"
--conf spark.executorEnv.CLASSPATH="$(
--py-files ${TFoS_HOME}/examples/mnist/spark/mnist_dist.py,${TFoS_HOME}/tfspark.zip
--conf spark.cores.max=2
--conf spark.task.cpus=1
${TFoS_HOME}/examples/mnist/spark/mnist_spark.py
--cluster_size 2
--images hdfs://Master:9000/user/ubuntu/examples/mnist/csv/train/images
--labels hdfs://Master:9000/user/ubuntu/examples/mnist/csv/train/labels
--format csv
--mode train
--model mnist_model
command line shows below:
18/02/01 17:10:04 INFO spark.SparkContext: Running Spark version 2.2.0
18/02/01 17:10:04 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
18/02/01 17:10:04 INFO spark.SparkContext: Submitted application: mnist_spark
18/02/01 17:10:04 INFO spark.SecurityManager: Changing view acls to: ubuntu
18/02/01 17:10:04 INFO spark.SecurityManager: Changing modify acls to: ubuntu
18/02/01 17:10:04 INFO spark.SecurityManager: Changing view acls groups to:
18/02/01 17:10:04 INFO spark.SecurityManager: Changing modify acls groups to:
18/02/01 17:10:04 INFO spark.SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(ubuntu); groups with view permissions: Set(); users with modify permissions: Set(ubuntu); groups with modify permissions: Set()
18/02/01 17:10:04 INFO util.Utils: Successfully started service 'sparkDriver' on port 36233.
18/02/01 17:10:04 INFO spark.SparkEnv: Registering MapOutputTracker
18/02/01 17:10:04 INFO spark.SparkEnv: Registering BlockManagerMaster
18/02/01 17:10:04 INFO storage.BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information
18/02/01 17:10:04 INFO storage.BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up
18/02/01 17:10:04 INFO storage.DiskBlockManager: Created local directory at /tmp/blockmgr-63ebc0f7-8382-4ede-b45f-391ee95b8f55
18/02/01 17:10:04 INFO memory.MemoryStore: MemoryStore started with capacity 366.3 MB
18/02/01 17:10:04 INFO spark.SparkEnv: Registering OutputCommitCoordinator
18/02/01 17:10:05 INFO util.log: Logging initialized @1444ms
18/02/01 17:10:05 INFO server.Server: jetty-9.3.z-SNAPSHOT
18/02/01 17:10:05 INFO server.Server: Started @1491ms
18/02/01 17:10:05 INFO server.AbstractConnector: Started ServerConnector@5eaf53af{HTTP/1.1,[http/1.1]}{0.0.0.0:4040}
18/02/01 17:10:05 INFO util.Utils: Successfully started service 'SparkUI' on port 4040.
18/02/01 17:10:05 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@20addad8{/jobs,null,AVAILABLE,@Spark}
18/02/01 17:10:05 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@a0b04f9{/jobs/json,null,AVAILABLE,@Spark}
18/02/01 17:10:05 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@24f86289{/jobs/job,null,AVAILABLE,@Spark}
18/02/01 17:10:05 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@71352c8a{/jobs/job/json,null,AVAILABLE,@Spark}
18/02/01 17:10:05 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@66f9b986{/stages,null,AVAILABLE,@Spark}
18/02/01 17:10:05 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@6b8f78de{/stages/json,null,AVAILABLE,@Spark}
18/02/01 17:10:05 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@21eeda6d{/stages/stage,null,AVAILABLE,@Spark}
18/02/01 17:10:05 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@6e80441f{/stages/stage/json,null,AVAILABLE,@Spark}
18/02/01 17:10:05 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@302da50a{/stages/pool,null,AVAILABLE,@Spark}
18/02/01 17:10:05 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@33031d8c{/stages/pool/json,null,AVAILABLE,@Spark}
18/02/01 17:10:05 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@379d3a55{/storage,null,AVAILABLE,@Spark}
18/02/01 17:10:05 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@3be78f3f{/storage/json,null,AVAILABLE,@Spark}
18/02/01 17:10:05 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@214877da{/storage/rdd,null,AVAILABLE,@Spark}
18/02/01 17:10:05 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@2e848d1d{/storage/rdd/json,null,AVAILABLE,@Spark}
18/02/01 17:10:05 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@7ed4a9db{/environment,null,AVAILABLE,@Spark}
18/02/01 17:10:05 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@36667fce{/environment/json,null,AVAILABLE,@Spark}
18/02/01 17:10:05 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@762505a1{/executors,null,AVAILABLE,@Spark}
18/02/01 17:10:05 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@480addf1{/executors/json,null,AVAILABLE,@Spark}
18/02/01 17:10:05 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@1cef33ef{/executors/threadDump,null,AVAILABLE,@Spark}
18/02/01 17:10:05 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@75e8c5e5{/executors/threadDump/json,null,AVAILABLE,@Spark}
18/02/01 17:10:05 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@1b3f38b3{/static,null,AVAILABLE,@Spark}
18/02/01 17:10:05 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@682ae9af{/,null,AVAILABLE,@Spark}
18/02/01 17:10:05 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@154274b2{/api,null,AVAILABLE,@Spark}
18/02/01 17:10:05 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@57946975{/jobs/job/kill,null,AVAILABLE,@Spark}
18/02/01 17:10:05 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@59c84ef4{/stages/stage/kill,null,AVAILABLE,@Spark}
18/02/01 17:10:05 INFO ui.SparkUI: Bound SparkUI to 0.0.0.0, and started at http://192.168.1.158:4040
18/02/01 17:10:05 INFO spark.SparkContext: Added file file:/home/ubuntu/TensorFlowOnSpark/examples/mnist/spark/mnist_spark.py at spark://192.168.1.158:36233/files/mnist_spark.py with timestamp 1517476205189
18/02/01 17:10:05 INFO util.Utils: Copying /home/ubuntu/TensorFlowOnSpark/examples/mnist/spark/mnist_spark.py to /tmp/spark-fcec7a5a-e968-4e64-b5ee-d8752b121deb/userFiles-c929132a-b5fc-43b6-9f9a-24a4b37f1698/mnist_spark.py
18/02/01 17:10:05 INFO spark.SparkContext: Added file file:/home/ubuntu/TensorFlowOnSpark/examples/mnist/spark/mnist_dist.py at spark://192.168.1.158:36233/files/mnist_dist.py with timestamp 1517476205196
18/02/01 17:10:05 INFO util.Utils: Copying /home/ubuntu/TensorFlowOnSpark/examples/mnist/spark/mnist_dist.py to /tmp/spark-fcec7a5a-e968-4e64-b5ee-d8752b121deb/userFiles-c929132a-b5fc-43b6-9f9a-24a4b37f1698/mnist_dist.py
18/02/01 17:10:05 INFO spark.SparkContext: Added file file:/home/ubuntu/TensorFlowOnSpark/tfspark.zip at spark://192.168.1.158:36233/files/tfspark.zip with timestamp 1517476205198
18/02/01 17:10:05 INFO util.Utils: Copying /home/ubuntu/TensorFlowOnSpark/tfspark.zip to /tmp/spark-fcec7a5a-e968-4e64-b5ee-d8752b121deb/userFiles-c929132a-b5fc-43b6-9f9a-24a4b37f1698/tfspark.zip
18/02/01 17:10:05 INFO client.StandaloneAppClient$ClientEndpoint: Connecting to master spark://master:7077...
18/02/01 17:10:05 INFO client.TransportClientFactory: Successfully created connection to Master/192.168.1.158:7077 after 21 ms (0 ms spent in bootstraps)
18/02/01 17:10:05 INFO cluster.StandaloneSchedulerBackend: Connected to Spark cluster with app ID app-20180201171005-0005
18/02/01 17:10:05 INFO client.StandaloneAppClient$ClientEndpoint: Executor added: app-20180201171005-0005/0 on worker-20180201163215-192.168.1.159-45847 (192.168.1.159:45847) with 1 cores
18/02/01 17:10:05 INFO cluster.StandaloneSchedulerBackend: Granted executor ID app-20180201171005-0005/0 on hostPort 192.168.1.159:45847 with 1 cores, 1024.0 MB RAM
18/02/01 17:10:05 INFO client.StandaloneAppClient$ClientEndpoint: Executor added: app-20180201171005-0005/1 on worker-20180201163215-192.168.1.158-43047 (192.168.1.158:43047) with 1 cores
18/02/01 17:10:05 INFO cluster.StandaloneSchedulerBackend: Granted executor ID app-20180201171005-0005/1 on hostPort 192.168.1.158:43047 with 1 cores, 1024.0 MB RAM
18/02/01 17:10:05 INFO util.Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 37081.
18/02/01 17:10:05 INFO netty.NettyBlockTransferService: Server created on 192.168.1.158:37081
18/02/01 17:10:05 INFO storage.BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy
18/02/01 17:10:05 INFO storage.BlockManagerMaster: Registering BlockManager BlockManagerId(driver, 192.168.1.158, 37081, None)
18/02/01 17:10:05 INFO storage.BlockManagerMasterEndpoint: Registering block manager 192.168.1.158:37081 with 366.3 MB RAM, BlockManagerId(driver, 192.168.1.158, 37081, None)
18/02/01 17:10:05 INFO client.StandaloneAppClient$ClientEndpoint: Executor updated: app-20180201171005-0005/0 is now RUNNING
18/02/01 17:10:05 INFO storage.BlockManagerMaster: Registered BlockManager BlockManagerId(driver, 192.168.1.158, 37081, None)
18/02/01 17:10:05 INFO client.StandaloneAppClient$ClientEndpoint: Executor updated: app-20180201171005-0005/1 is now RUNNING
18/02/01 17:10:05 INFO storage.BlockManager: Initialized BlockManager: BlockManagerId(driver, 192.168.1.158, 37081, None)
18/02/01 17:10:05 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@47677170{/metrics/json,null,AVAILABLE,@Spark}
18/02/01 17:10:05 INFO cluster.StandaloneSchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.0
args: Namespace(batch_size=100, cluster_size=2, epochs=1, format='csv', images='hdfs://Master:9000/user/ubuntu/examples/mnist/csv/train/images', labels='hdfs://Master:9000/user/ubuntu/examples/mnist/csv/train/labels', mode='train', model='mnist_model', output='predictions', rdma=False, readers=1, steps=1000, tensorboard=False)
2018-02-01T17:10:05.715826 ===== Start
18/02/01 17:10:06 INFO memory.MemoryStore: Block broadcast_0 stored as values in memory (estimated size 218.5 KB, free 366.1 MB)
18/02/01 17:10:06 INFO memory.MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 20.6 KB, free 366.1 MB)
18/02/01 17:10:06 INFO storage.BlockManagerInfo: Added broadcast_0_piece0 in memory on 192.168.1.158:37081 (size: 20.6 KB, free: 366.3 MB)
18/02/01 17:10:06 INFO spark.SparkContext: Created broadcast 0 from textFile at NativeMethodAccessorImpl.java:0
18/02/01 17:10:06 INFO memory.MemoryStore: Block broadcast_1 stored as values in memory (estimated size 218.5 KB, free 365.9 MB)
18/02/01 17:10:06 INFO memory.MemoryStore: Block broadcast_1_piece0 stored as bytes in memory (estimated size 20.6 KB, free 365.8 MB)
18/02/01 17:10:06 INFO storage.BlockManagerInfo: Added broadcast_1_piece0 in memory on 192.168.1.158:37081 (size: 20.6 KB, free: 366.3 MB)
18/02/01 17:10:06 INFO spark.SparkContext: Created broadcast 1 from textFile at NativeMethodAccessorImpl.java:0
zipping images and labels
18/02/01 17:10:06 INFO mapred.FileInputFormat: Total input paths to process : 10
18/02/01 17:10:06 INFO mapred.FileInputFormat: Total input paths to process : 10
2018-02-01 17:10:06,523 INFO (MainThread-11280) Reserving TFSparkNodes
2018-02-01 17:10:06,525 INFO (MainThread-11280) listening for reservations at ('192.168.1.158', 42071)
2018-02-01 17:10:06,525 INFO (MainThread-11280) Starting TensorFlow on executors
2018-02-01 17:10:06,533 INFO (MainThread-11280) Waiting for TFSparkNodes to start
2018-02-01 17:10:06,533 INFO (MainThread-11280) waiting for 2 reservations
18/02/01 17:10:06 INFO cluster.CoarseGrainedSchedulerBackend$DriverEndpoint: Registered executor NettyRpcEndpointRef(spark-client://Executor) (192.168.1.159:36946) with ID 0
18/02/01 17:10:06 INFO spark.SparkContext: Starting job: foreachPartition at /usr/local/lib/python2.7/dist-packages/tensorflowonspark/TFCluster.py:247
18/02/01 17:10:06 INFO scheduler.DAGScheduler: Got job 0 (foreachPartition at /usr/local/lib/python2.7/dist-packages/tensorflowonspark/TFCluster.py:247) with 2 output partitions
18/02/01 17:10:06 INFO scheduler.DAGScheduler: Final stage: ResultStage 0 (foreachPartition at /usr/local/lib/python2.7/dist-packages/tensorflowonspark/TFCluster.py:247)
18/02/01 17:10:06 INFO scheduler.DAGScheduler: Parents of final stage: List()
18/02/01 17:10:06 INFO scheduler.DAGScheduler: Missing parents: List()
18/02/01 17:10:06 INFO scheduler.DAGScheduler: Submitting ResultStage 0 (PythonRDD[8] at foreachPartition at /usr/local/lib/python2.7/dist-packages/tensorflowonspark/TFCluster.py:247), which has no missing parents
18/02/01 17:10:06 INFO memory.MemoryStore: Block broadcast_2 stored as values in memory (estimated size 24.5 KB, free 365.8 MB)
18/02/01 17:10:06 INFO storage.BlockManagerMasterEndpoint: Registering block manager 192.168.1.159:44733 with 366.3 MB RAM, BlockManagerId(0, 192.168.1.159, 44733, None)
18/02/01 17:10:06 INFO memory.MemoryStore: Block broadcast_2_piece0 stored as bytes in memory (estimated size 10.3 KB, free 365.8 MB)
18/02/01 17:10:06 INFO storage.BlockManagerInfo: Added broadcast_2_piece0 in memory on 192.168.1.158:37081 (size: 10.3 KB, free: 366.2 MB)
18/02/01 17:10:06 INFO spark.SparkContext: Created broadcast 2 from broadcast at DAGScheduler.scala:1006
18/02/01 17:10:06 INFO scheduler.DAGScheduler: Submitting 2 missing tasks from ResultStage 0 (PythonRDD[8] at foreachPartition at /usr/local/lib/python2.7/dist-packages/tensorflowonspark/TFCluster.py:247) (first 15 tasks are for partitions Vector(0, 1))
18/02/01 17:10:06 INFO scheduler.TaskSchedulerImpl: Adding task set 0.0 with 2 tasks
18/02/01 17:10:06 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, 192.168.1.159, executor 0, partition 0, PROCESS_LOCAL, 4834 bytes)
18/02/01 17:10:06 INFO cluster.CoarseGrainedSchedulerBackend$DriverEndpoint: Registered executor NettyRpcEndpointRef(spark-client://Executor) (192.168.1.158:51760) with ID 1
18/02/01 17:10:06 INFO scheduler.TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1, 192.168.1.158, executor 1, partition 1, PROCESS_LOCAL, 4834 bytes)
18/02/01 17:10:06 INFO storage.BlockManagerMasterEndpoint: Registering block manager 192.168.1.158:41971 with 366.3 MB RAM, BlockManagerId(1, 192.168.1.158, 41971, None)
18/02/01 17:10:07 INFO storage.BlockManagerInfo: Added broadcast_2_piece0 in memory on 192.168.1.158:41971 (size: 10.3 KB, free: 366.3 MB)
2018-02-01 17:10:07,534 INFO (MainThread-11280) waiting for 2 reservations
2018-02-01 17:10:08,535 INFO (MainThread-11280) waiting for 1 reservations
2018-02-01 17:10:09,536 INFO (MainThread-11280) waiting for 1 reservations
2018-02-01 17:10:10,538 INFO (MainThread-11280) waiting for 1 reservations
2018-02-01 17:10:11,539 INFO (MainThread-11280) waiting for 1 reservations
2018-02-01 17:10:12,540 INFO (MainThread-11280) waiting for 1 reservations
2018-02-01 17:10:13,541 INFO (MainThread-11280) waiting for 1 reservations
2018-02-01 17:10:14,542 INFO (MainThread-11280) waiting for 1 reservations
2018-02-01 17:10:15,543 INFO (MainThread-11280) waiting for 1 reservations
2018-02-01 17:10:16,545 INFO (MainThread-11280) waiting for 1 reservations
2018-02-01 17:10:17,546 INFO (MainThread-11280) waiting for 1 reservations
18/02/01 17:10:17 INFO storage.BlockManagerInfo: Added broadcast_2_piece0 in memory on 192.168.1.159:44733 (size: 10.3 KB, free: 366.3 MB)
2018-02-01 17:10:18,547 INFO (MainThread-11280) all reservations completed
2018-02-01 17:10:18,547 INFO (MainThread-11280) All TFSparkNodes started
2018-02-01 17:10:18,548 INFO (MainThread-11280) {'addr': '/tmp/pymp-tLjuIS/listener-mfx0pd', 'task_index': 0, 'port': 43545, 'authkey': '6\x11b\x99\xaf\x9eCU\xbba"{\xef\x18\xe3\x83', 'worker_num': 1, 'host': '192.168.1.158', 'ppid': 11424, 'job_name': 'worker', 'tb_pid': 0, 'tb_port': 0}
2018-02-01 17:10:18,548 INFO (MainThread-11280) {'addr': ('192.168.1.159', 39975), 'task_index': 0, 'port': 45045, 'authkey': '.\x0e\xac\x1e#\x8bEk\x93\x8f\x83y\x10fnt', 'worker_num': 0, 'host': '192.168.1.159', 'ppid': 15620, 'job_name': 'ps', 'tb_pid': 0, 'tb_port': 0}
2018-02-01 17:10:18,548 INFO (MainThread-11280) Feeding training data
18/02/01 17:10:18 INFO spark.SparkContext: Starting job: collect at PythonRDD.scala:458
18/02/01 17:10:18 INFO scheduler.DAGScheduler: Got job 1 (collect at PythonRDD.scala:458) with 10 output partitions
18/02/01 17:10:18 INFO scheduler.DAGScheduler: Final stage: ResultStage 1 (collect at PythonRDD.scala:458)
18/02/01 17:10:18 INFO scheduler.DAGScheduler: Parents of final stage: List()
18/02/01 17:10:18 INFO scheduler.DAGScheduler: Missing parents: List()
18/02/01 17:10:18 INFO scheduler.DAGScheduler: Submitting ResultStage 1 (PythonRDD[10] at RDD at PythonRDD.scala:48), which has no missing parents
18/02/01 17:10:18 INFO memory.MemoryStore: Block broadcast_3 stored as values in memory (estimated size 52.5 KB, free 365.7 MB)
18/02/01 17:10:18 INFO memory.MemoryStore: Block broadcast_3_piece0 stored as bytes in memory (estimated size 12.5 KB, free 365.7 MB)
18/02/01 17:10:18 INFO storage.BlockManagerInfo: Added broadcast_3_piece0 in memory on 192.168.1.158:37081 (size: 12.5 KB, free: 366.2 MB)
18/02/01 17:10:18 INFO spark.SparkContext: Created broadcast 3 from broadcast at DAGScheduler.scala:1006
18/02/01 17:10:18 INFO scheduler.DAGScheduler: Submitting 10 missing tasks from ResultStage 1 (PythonRDD[10] at RDD at PythonRDD.scala:48) (first 15 tasks are for partitions Vector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9))
18/02/01 17:10:18 INFO scheduler.TaskSchedulerImpl: Adding task set 1.0 with 10 tasks
18/02/01 17:10:19 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 1.0 (TID 2, 192.168.1.158, executor 1, partition 0, ANY, 5496 bytes)
18/02/01 17:10:19 INFO scheduler.TaskSetManager: Finished task 1.0 in stage 0.0 (TID 1) in 12790 ms on 192.168.1.158 (executor 1) (1/2)
18/02/01 17:10:19 INFO storage.BlockManagerInfo: Added broadcast_3_piece0 in memory on 192.168.1.158:41971 (size: 12.5 KB, free: 366.3 MB)
18/02/01 17:10:19 INFO storage.BlockManagerInfo: Added broadcast_0_piece0 in memory on 192.168.1.158:41971 (size: 20.6 KB, free: 366.3 MB)
18/02/01 17:10:20 INFO storage.BlockManagerInfo: Added broadcast_1_piece0 in memory on 192.168.1.158:41971 (size: 20.6 KB, free: 366.2 MB)
it stuck here and i force it to quit by ctrl+c
so what caught me?