Skip to content

A comprehensive data analysis application built with Python, featuring both command-line and GUI interfaces. This project demonstrates professional-grade data analysis practices with real-world datasets.

License

Notifications You must be signed in to change notification settings

ysfadm/Data-Analysis-Project

Repository files navigation

Real-World Data Analysis Project

A comprehensive data analysis application built with Python, featuring both command-line and GUI interfaces. This project demonstrates professional-grade data analysis practices with real-world datasets.

🎯 Project Overview

This project includes:

  • Data Cleaning: Handle missing values, duplicates, and data validation
  • Exploratory Data Analysis (EDA): Statistical analysis and correlation studies
  • Advanced Visualizations: Multiple chart types using Matplotlib and Seaborn
  • Interactive GUI: User-friendly tkinter interface for analysis
  • Portfolio Ready: Production-quality code suitable for real-world applications

📁 Project Structure

Data-Analysis-Project/
├── scripts/
│   ├── data_analysis.py      # Main analysis script
│   ├── app.py               # tkinter GUI application
│   └── create_dataset.py    # Dataset generation utility
├── data/                    # Data and visualization outputs
│   ├── sample_data.csv     # Sample dataset
│   └── *.png               # Generated visualizations
├── requirements.txt         # Python dependencies
└── README.md               # This file

🚀 Getting Started

Prerequisites

  • Python 3.8 or higher
  • pip (Python package manager)

Installation

  1. Clone or navigate to the project directory

    cd Data-Analysis-Project
  2. Create a virtual environment (recommended)

    python -m venv venv
    # On Windows:
    venv\Scripts\activate
    # On macOS/Linux:
    source venv/bin/activate
  3. Install dependencies

    pip install -r requirements.txt

💻 Usage

Option 1: Command-Line Analysis Script

Run the main analysis script to analyze the built-in Iris dataset:

python scripts/data_analysis.py

This will:

  • Load the Iris dataset
  • Perform data cleaning
  • Generate comprehensive statistics
  • Create 6 different visualization plots
  • Display detailed analysis report

Output files created:

  • data/1_distribution_plots.png - Histogram distributions
  • data/2_box_plots.png - Outlier detection
  • data/3_correlation_heatmap.png - Variable relationships
  • data/4_scatter_plots.png - Scatter analysis
  • data/5_categorical_analysis.png - Category distributions
  • data/6_pair_plot.png - Complete pair matrix

Option 2: Interactive GUI Application

Launch the tkinter GUI for interactive analysis:

python scripts/app.py

Features:

  • Data Loading: Load Iris dataset or custom CSV files
  • Data Info: View dataset structure and metadata
  • Analysis Tools:
    • Data Cleaning Report
    • Statistical Summary
    • Correlation Analysis
  • Visualizations:
    • Distribution Plots
    • Box Plots
    • Scatter Plots
    • Correlation Heatmap
    • Pair Plots
  • Export: Save analysis results to CSV and text files

Option 3: Generate Sample Data

Create a realistic employee dataset:

python scripts/create_dataset.py

Then load data/sample_data.csv in the GUI application.

📊 Analysis Features

Data Cleaning Operations

  • Detect and handle missing values
  • Remove duplicate records
  • Validate data types
  • Generate quality assessment reports

Statistical Analysis

  • Descriptive statistics (mean, median, std dev, etc.)
  • Skewness and kurtosis analysis
  • Quartile analysis (Q1, Q3, IQR)
  • Correlation coefficient calculation

Visualizations

Distribution Analysis

  • Histograms with KDE curves
  • Shows data spread and frequency

Outlier Detection

  • Box plots for each feature
  • Identifies anomalous values

Correlation Heatmap

  • Visual correlation matrix
  • Color-coded strength indicators

Scatter Plots

  • Variable relationships
  • Trend identification

Categorical Analysis

  • Bar charts for categorical data
  • Frequency distributions

Pair Plot Matrix

  • Complete relationship overview
  • All variable combinations

📚 Data Analysis Workflow

Load Data → Clean Data → Exploratory Analysis → Visualize → Infer Results

Step 1: Load Data

  • Built-in Iris dataset or custom CSV

Step 2: Clean Data

  • Check for missing values
  • Remove duplicates
  • Validate data types

Step 3: Exploratory Analysis

  • Calculate descriptive statistics
  • Analyze correlations
  • Identify distributions

Step 4: Visualize

  • Create comprehensive charts
  • Identify patterns
  • Highlight relationships

Step 5: Draw Conclusions

  • Interpret statistical results
  • Identify key insights
  • Generate recommendations

🔍 Example Analysis: Iris Dataset

The Iris dataset contains 150 samples with 4 features:

  • Sepal Length (cm)
  • Sepal Width (cm)
  • Petal Length (cm)
  • Petal Width (cm)
  • Species (Setosa, Versicolor, Virginica)

Key Insights from Analysis:

  1. Strong Correlations: Petal measurements show high correlation (r > 0.96)
  2. Species Differentiation: Clear clustering by species in visualization
  3. Feature Importance: Petal length/width are better discriminators
  4. Distribution: Most features follow approximately normal distributions

📋 Requirements

See requirements.txt:

pandas>=1.3.0
numpy>=1.21.0
matplotlib>=3.4.0
seaborn>=0.11.0
scikit-learn>=0.24.0

Install All Dependencies:

pip install -r requirements.txt

🎓 Portfolio Value

This project demonstrates:

Real-World Data Analysis: Complete pipeline from raw data to insights ✅ Professional Coding: Clean, documented, modular Python code ✅ Multiple Interfaces: Both CLI and GUI implementations ✅ Data Visualization: Advanced plotting with Matplotlib and Seaborn ✅ Statistical Analysis: Comprehensive statistical methods ✅ Best Practices: Error handling, documentation, code organization ✅ Pandas/NumPy Expertise: Advanced data manipulation ✅ User Interface Design: Professional tkinter GUI with organized layout

🔧 Customization

Using Your Own Dataset

The GUI app supports loading any CSV file:

  1. Launch the app: python scripts/app.py
  2. Click "Load CSV File"
  3. Select your dataset
  4. Run analysis tools as needed

Modifying Analysis

Edit scripts/data_analysis.py to:

  • Add custom statistical tests
  • Create domain-specific visualizations
  • Implement specialized cleaning for your data
  • Add predictive models

📝 Code Highlights

DataAnalyzer Class

analyzer = DataAnalyzer(data_source='path/to/data.csv')
analyzer.data_cleaning()
analyzer.exploratory_data_analysis()
analyzer.create_visualizations()
analyzer.generate_report()

GUI Features

  • Multi-tab interface (Console, Visualization, Data Preview)
  • Real-time output logging
  • Interactive chart generation
  • Export functionality
  • Error handling with user feedback

🐛 Troubleshooting

Issue: GUI doesn't launch

  • Solution: Ensure tkinter is installed (usually comes with Python)

Issue: Missing library error

  • Solution: Run pip install -r requirements.txt

Issue: CSV file won't load

  • Solution: Ensure CSV file is properly formatted and accessible

Issue: Plots not displaying

  • Solution: Check that data contains numeric columns for visualization

📌 Tips for Success

  1. Start with Iris Dataset: Understand the analysis flow first
  2. Explore GUI Features: Try all visualization options
  3. Custom Data: Test with your own datasets
  4. Modify Code: Adapt analysis for your specific needs
  5. Save Results: Export analysis for presentations

📖 Learning Outcomes

After using this project, you'll understand:

  • Data cleaning and preprocessing techniques
  • Statistical analysis and correlation studies
  • Data visualization best practices
  • GUI development with tkinter
  • Professional Python project structure
  • Real-world data analysis workflows

🤝 Contributing

Feel free to:

  • Add new visualization types
  • Implement additional statistical tests
  • Optimize performance
  • Improve user interface
  • Add new analysis features

📄 License

This project is provided as-is for educational and portfolio purposes.

📧 Contact & Support

For questions or improvements, feel free to extend the project with your own enhancements.


Happy Analyzing! 📊

Start your data science journey with this professional-grade analysis tool.

About

A comprehensive data analysis application built with Python, featuring both command-line and GUI interfaces. This project demonstrates professional-grade data analysis practices with real-world datasets.

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages