We propose a hybrid denoising model based on Transformer Encoder and Convolutional Decoder Network (TECDNet), which can achieved great denosing performance while maintaining a relatively low computational complexity
$ conda create -n venv python=3.8
$ conda activate venv
$ pip install -r requirements.txtpython main_train.py \
--arch "RBF_TECDNet_S" \
--pth_dir "./experiments/TECDNet" \
--data_dir "[your train data dir]" \
--log_dir "./runs" \
--is_warmup True \
--augment True \
--img_size 128 \
--batch_size 32 \
--n_epochs 250
python main_test.py \
--arch "RBF_TECDNet_S" \
--pth_path "[the weights file dir]" \
--data_path "[test images path]" \
--device "cuda:0"
Our pre-trained models can be downloaded as following:
| PSNR on SIDD | SSIM on SIDD | Weights Link | |
|---|---|---|---|
| TECDNet-S | 39.788 | 0.970 | Link |
@Article{9779501,
author = {Zhao, Mo and Cao, Gang and Huang, Xianglin and Yang, Lifang},
journal = {IEEE Signal Processing Letters},
title = {Hybrid Transformer-CNN for Real Image Denoising},
year = {2022},
volume = {29},
pages = {1252-1256},
doi = {10.1109/LSP.2022.3176486}
}
If you have any questions, please contact me(koblod@163.com).
