BLADE is a data-free framework for efficient video generation. By jointly training an adaptive sparse attention mechanism with a step distillation technique, it achieves a significant acceleration in video generation models. This project combines a block-sparse attention mechanism with step distillation, reducing the number of inference steps from 50 to just 8 while maintaining high-quality generation.
- [Aug 2025] ๐ The code and pre-trained models for BLADE have been released!
- [Aug 2025] ๐ Support for two mainstream video generation models, CogVideoX-5B and WanX-1.3B, is now available.
- [Aug 2025] โก Achieved high-quality video generation in just 8 steps, a significant speedup compared to the 50-step baseline.
- ๐ Efficient Inference: Reduces the number of inference steps from 50 to 8 while preserving generation quality.
- ๐ฏ Adaptive Sparse Attention: Employs a block-sparse attention mechanism to significantly reduce computational complexity.
- ๐ Step Distillation: Utilizes the Trajectory Distillation Method (TDM), enabling training without the need for video data.
- ๐ฎ Plug-and-Play: Supports CogVideoX-5B and WanX-1.3B models without requiring modifications to their original architectures.
- Python >= 3.11 (Recommended)
- CUDA >= 11.6 (Recommended)
- GPU Memory >= 24GB (for Inference)
- GPU Memory >= 80GB (for Training)
-
Clone the repository
git clone https://github.com/ziplab/BLADE.git cd BLADE
-
Install dependencies
# Install using uv (Recommended) uv pip install -r requirements.txt # Or use pip pip install -r requirements.txt
-
Compile the Block-Sparse-Attention library
git clone https://github.com/mit-han-lab/Block-Sparse-Attention.git cd Block-Sparse-Attention pip install packaging pip install ninja python setup.py install cd ..
Please download the following base model weights and place them in the specified directories:
-
CogVideoX-5B Model
# Download from Hugging Face git lfs install git clone https://huggingface.co/zai-org/CogVideoX-5b cogvideox/CogVideoX-5b
-
WanX-1.3B Model
# Download from Hugging Face git clone https://huggingface.co/Wan-AI/Wan2.1-T2V-1.3B-Diffusers wanx/wan1.3b
We provide pre-trained weights for BLADE:
# Download pre-trained weights
git clone https://huggingface.co/GYP666/BLADE pretrained_weights
Ensure your directory structure for weights is as follows:
BLADE/
โโโ cogvideox/
โ โโโ CogVideoX-5b/ # Base model weights for CogVideoX
โโโ wanx/
โ โโโ wan1.3b/ # Base model weights for WanX
โโโ pretrained_weights/ # Pre-trained weights for BLADE
โโโ BLADE_cogvideox_weight/
โโโ BLADE_wanx_weight/
cd cogvideox
python train/inference.py \
--lora_path ../pretrained_weights/cogvideox_checkpoints/your_checkpoint \
--gpu 0
Argument Descriptions:
--lora_path
: Path to the LoRA weights file.--gpu
: The ID of the GPU device to use (Default: 0).
Output: The generated videos will be saved in the cogvideox/outputs/inference/
directory.
cd wanx
python train/inference.py \
--lora_path ../pretrained_weights/wanx_checkpoints/your_checkpoint \
--gpu 0
Output: The generated videos will be saved in the wanx/outputs/
directory.
Before training, you need to preprocess the text prompts to generate embeddings.
cd utils
python process_prompts_cogvideox.py \
--input_file your_prompts.txt \
--output_dir ../cogvideox/prompts \
--model_path ../cogvideox/CogVideoX-5b \
--batch_size 32 \
--save_separate
Argument Descriptions:
--input_file
: A.txt
file containing prompts, with one prompt per line.--output_dir
: The directory to save the output embeddings.--model_path
: Path to the CogVideoX model.--batch_size
: The batch size for processing.--save_separate
: Whether to save each embedding as a separate file.
cd utils
python process_prompts_wanx.py
This script will automatically process the prompts in utils/all_dimension_aug_wanx.txt
and generate the corresponding embeddings.
cd cogvideox
bash train_tdm_1.sh
Core Training Parameters:
# If not training with 8 GPUs, you must modify CUDA_VISIBLE_DEVICES and the num_processes in config.yaml
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 accelerate launch \
--config_file train/config.yaml \
train/train_cogvideo_tdm.py \
--pretrained_model_name_or_path CogVideoX-5b \ # Path to the base model
--mixed_precision bf16 \ # Use mixed-precision for reduced memory usage
--train_batch_size 5 \ # Training batch size
--gradient_accumulation_steps 4 \ # Number of gradient accumulation steps
--learning_rate 1e-4 \ # Learning rate for the student model
--learning_rate_g 1e-4 \
--learning_rate_fake 5e-4 \ # Learning rate for the fake model
--lambda_reg 0.5 \ # Regularization weight
--k_step 8 \ # Target number of steps for distillation
--cfg 3.5 \ # Classifier-Free Guidance scale
--eta 0.9 \ # ETA parameter for DDIM
--use_sparsity true \ # Enable sparse attention
--rank 64 \
--lora_alpha 64 \ # LoRA configuration
--max_train_steps 300 \ # Maximum number of training steps
--checkpointing_steps 15 \ # Interval for saving checkpoints
--gradient_checkpointing \ # Use gradient checkpointing to save memory
--enable_slicing \
--enable_tiling # VAE memory optimization
cd wanx
bash train_wanx_tdm.sh
BLADE/
โโโ README.md # Project documentation
โโโ requirements.txt # List of Python dependencies
โ
โโโ cogvideox/ # Code related to CogVideoX
โ โโโ CogVideoX-5b/ # Directory for base model weights
โ โโโ train/ # Training scripts
โ โ โโโ inference.py # Inference script
โ โ โโโ train_cogvideo_tdm.py # Training script
โ โ โโโ train_tdm_1.sh # Script to launch training
โ โ โโโ modify_cogvideo.py # Model modification script
โ โ โโโ config.yaml # Training configuration file
โ โโโ prompts/ # Preprocessed prompts and embeddings
โ โโโ outputs/ # Output from training and inference
โ
โโโ wanx/ # Code related to WanX
โ โโโ wan1.3b/ # Directory for base model weights
โ โโโ train/ # Training scripts
โ โ โโโ inference.py # Inference script
โ โ โโโ train_wanx_tdm.py # Training script
โ โ โโโ train_wanx_tdm.sh # Script to launch training
โ โ โโโ modify_wan.py # Model modification script
โ โโโ prompts/ # Preprocessed prompts and embeddings
โ โโโ outputs/ # Output from training and inference
โ
โโโ utils/ # Utility scripts
โ โโโ process_prompts_cogvideox.py # Data preprocessing for CogVideoX
โ โโโ process_prompts_wanx.py # Data preprocessing for WanX
โ โโโ all_dimension_aug_wanx.txt # Training prompts for WanX
โ
โโโ Block-Sparse-Attention/ # Sparse attention library
โ โโโ setup.py # Compilation and installation script
โ โโโ block_sparse_attn/ # Core library code
โ โโโ README.md # Library usage instructions
โ
โโโ ds_config.json # DeepSpeed configuration file
- FlashAttention, Block-Sparse-Attention: For the foundational work on sparse attention.
- CogVideoX, Wan2.1: For the supported models.
- TDM: For the foundational work on distillation implementation.
- Diffusers: For the invaluable diffusion models library.
If you use BLADE in your research, please cite our work:
@misc{gu2025bladeblocksparseattentionmeets,
title={BLADE: Block-Sparse Attention Meets Step Distillation for Efficient Video Generation},
author={Youping Gu and Xiaolong Li and Yuhao Hu and Minqi Chen and Bohan Zhuang},
year={2025},
eprint={2508.10774},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2508.10774},
}
For any questions or suggestions, feel free to:
- Contact Youping Gu at youpgu71@gmail.com.
- Submit an issue on our Github page.