Orchestrate multiple AI Agents to work together like a human team Complete complex software development tasks through reliable messaging protocols
Features | Quick Start | Architecture | Examples | Contributing
AgentHub is an open-source Multi-Agent Orchestration Framework that enables reliable communication and coordinated work between multiple AI Agents through a message routing architecture.
With a single command, launch a complete AI development team with:
- 1 Coordinator Agent (MAIN) - task planning, coordination, and review
- 4 Executor Agents (A/B/C/D) - parallel task execution
Manage AI collaborative development just like managing a human team.
| Traditional AI Development | AgentHub |
|---|---|
| Single AI working alone | Multi-Agent Parallel Collaboration |
| No division of labor | Automatic Task Breakdown & Assignment |
| High communication overhead | Standardized Messaging Protocol |
| State easily lost | Persistence + Crash Recovery |
| Hard to track progress | Complete Task State Management |
./scripts/start_team.sh- Auto-start Router (message hub)
- Open 5 independent terminal windows
- Generate standard documentation templates
- Inject AI role prompts
- ACK Confirmation - Dual acknowledgment at delivery and application layer
- Auto Retry - Exponential backoff retry strategy
- Timeout Handling - Automatic timeout detection and handling
- Idempotency - Message deduplication to avoid duplicate execution
review (review) -> assign (assign) -> execute (execute) -> verify (verify)
Standardized AI-to-AI communication protocol supporting:
- Document/code review
- Task assignment
- Q&A coordination
- Result verification
- Message logs (JSONL format)
- Inbox state persistence
- Auto-recovery after crash
- Session/epoch management support
- Customizable agent count
- Support for different AI CLI tools (Codex, Claude Code, etc.)
- Environment variable configuration
Watch how AgentHub orchestrates 5 AI agents working together
Coming soon: Video demonstration of multi-agent collaboration
Router Server
(Message Routing / State Management / Delivery)
│
┌───────┬───────┼───────┬───────┐
│ │ │ │ │
┌───▼───┐ ┌─▼───┐ ┌─▼───┐ ┌─▼───┐ ┌─▼───┐
│ MAIN │ │ A │ │ B │ │ C │ │ D │
│Coord. │ │Exec │ │Exec │ │Exec │ │Exec │
│Agent │ │Agent│ │Agent│ │Agent│ │Agent│
└───────┘ └─────┘ └─────┘ └─────┘ └─────┘
Role Responsibilities:
| Agent | Role | Responsibilities |
|---|---|---|
| MAIN | Coordinator | Task planning, document writing, problem solving, final review |
| A/B/C/D | Executors | Task execution, document review, feedback collection |
AgentHub defines a complete AI-to-AI communication protocol:
| Message Type | Direction | Purpose |
|---|---|---|
review |
MAIN->Members | Review documents/code |
report |
Members->MAIN | Feedback review results |
assign |
MAIN->Members | Assign tasks |
clarify |
Members->MAIN | Ask questions |
answer |
MAIN->Members | Answer questions |
verify |
MAIN->Members | Verify changes |
done |
Members->MAIN | Task complete |
fail |
Members->MAIN | Task failed |
See docs/main-members-workflow.md for complete protocol specification.
- macOS (Linux support planned)
- Python 3.8+
- Terminal.app or iTerm2
- AI CLI tool (Codex, Claude Code, or compatible)
# Clone repository
git clone https://github.com/Dmatut7/AgentHub.git
cd AgentHub# Start in your project directory
./scripts/start_team.shThe system will automatically:
- Start Router (default port 8765)
- Generate standard documentation templates
- Open 5 terminal windows for each agent
# MAIN writes code -> A/B/C/D review in parallel -> MAIN consolidates feedback# MAIN breaks down feature -> A/B/C/D implement components -> MAIN integrates# MAIN outlines -> A/B/C/D write sections -> MAIN finalizes# MAIN describes bug -> A/B/C/D investigate & propose fixes -> MAIN verifiesSee EXAMPLES.md for detailed use cases.
AgentHub/
├── scripts/ # Launch scripts
│ ├── start_team.sh # One-command launch
│ ├── stop_team.sh # Stop system
│ └── status_team.sh # Check status
├── src/
│ ├── api/ # HTTP server
│ ├── cli/ # CLI tools
│ ├── router/ # Message routing core
│ ├── protocol/ # Protocol definitions
│ ├── state/ # State management
│ ├── storage/ # Persistent storage
│ └── launcher/ # Terminal launcher
├── prompts/ # AI prompt templates
├── doc/ # Documentation templates
├── docs/ # Design documents
│ ├── design.md # System architecture
│ └── main-members-workflow.md # Protocol spec
└── README.md
# Start system
./scripts/start_team.sh
# Check status
./scripts/status_team.sh
# Send message
python3 src/cli/team.py say --from MAIN --to A --text "Start task"
# View message queue
curl http://127.0.0.1:8765/status | python3 -m json.tool
# Stop system
./scripts/stop_team.sh| Environment Variable | Description | Default |
|---|---|---|
TERMINAL_ADAPTER |
Terminal type (terminal/iterm) |
terminal |
CODEX_PATH |
AI CLI executable path | codex |
We welcome contributions! Please see CONTRIBUTING.md for details.
Quick steps:
- Fork the repository
- Create your feature branch (
git checkout -b feature/AmazingFeature) - Commit your changes (
git commit -m 'Add some AmazingFeature') - Push to the branch (
git push origin feature/AmazingFeature) - Open a Pull Request
- Design Doc - System architecture
- Protocol Spec - Message protocol details
- Examples - Use cases and examples
- Contributing - Contribution guide
- Support - Help & troubleshooting
- Changelog - Version history
- Linux support
- Windows support
- Web dashboard for monitoring
- More AI model integrations (GPT-4, Claude, Gemini)
- Plugin system for custom protocols
- Distributed agent support (across machines)
MIT License © 2026 Dmatut7
AgentHub - Making AI team collaboration simpler.
GitHub | Issues | Discussions
⭐ If you find this project helpful, please give it a Star!
