Tensor network contraction order optimization in Rust.
Ported from OMEinsumContractionOrders.jl.
📖 Read the full documentation (mdBook)
- Getting Started Guide
- Algorithm Comparison
- GPU Optimization
- PyTorch Integration
- API Reference
- Rust API Docs
When contracting multiple tensors together, the order of contractions significantly affects computational cost. Finding the optimal contraction order is NP-complete, but good heuristics can find near-optimal solutions quickly.
This library provides:
- GreedyMethod: Fast O(n² log n) greedy algorithm for contraction order
- TreeSA: Simulated annealing for higher quality contraction orders
- TreeSASlicer: Automatic slicing optimization to reduce memory usage
pip install omecoAdd to your Cargo.toml:
[dependencies]
omeco = "0.1"from omeco import (
optimize_code, slice_code, contraction_complexity, sliced_complexity,
GreedyMethod, TreeSA, TreeSASlicer, ScoreFunction
)
# Matrix chain: A[0,1] × B[1,2] × C[2,3] → D[0,3]
ixs = [[0, 1], [1, 2], [2, 3]]
out = [0, 3]
sizes = {0: 100, 1: 200, 2: 50, 3: 100}
# 1) Optimize contraction order
tree = optimize_code(ixs, out, sizes, GreedyMethod())
complexity = contraction_complexity(tree, ixs, sizes)
print(f"Time: 2^{complexity.tc:.2f}, Space: 2^{complexity.sc:.2f}")
# 2) Slice to reduce memory (automatic optimization)
slicer = TreeSASlicer.fast(score=ScoreFunction(sc_target=10.0))
sliced = slice_code(tree, ixs, sizes, slicer)
sliced_comp = sliced_complexity(sliced, ixs, sizes)
print(f"Sliced indices: {sliced.slicing()}")
print(f"Sliced space: 2^{sliced_comp.sc:.2f}")
# Use with PyTorch (see examples/pytorch_tensor_network_example.py)
tree_dict = tree.to_dict() # Convert to dict for traversalTwo core features are exposed in the quick start below: optimizing contraction orders and slicing for lower peak memory.
use omeco::{
EinCode, GreedyMethod, TreeSASlicer, slice_code,
contraction_complexity, optimize_code, sliced_complexity,
};
use std::collections::HashMap;
// Matrix chain: A[i,j] * B[j,k] * C[k,l] -> D[i,l]
let code = EinCode::new(
vec![vec!['i', 'j'], vec!['j', 'k'], vec!['k', 'l']],
vec!['i', 'l']
);
// Define tensor dimensions
let mut sizes = HashMap::new();
sizes.insert('i', 100);
sizes.insert('j', 200);
sizes.insert('k', 50);
sizes.insert('l', 100);
// 1) Optimize contraction order
let optimized = optimize_code(&code, &sizes, &GreedyMethod::default()).unwrap();
let complexity = contraction_complexity(&optimized, &sizes, &code.ixs);
println!("Time complexity: 2^{:.2}", complexity.tc);
println!("Space complexity: 2^{:.2}", complexity.sc);
// 2) Slice to reduce memory (automatic optimization)
let slicer = TreeSASlicer::fast().with_sc_target(10.0);
let sliced = slice_code(&optimized, &sizes, &slicer, &code.ixs).unwrap();
let sliced_comp = sliced_complexity(&sliced, &sizes, &code.ixs);
println!("Sliced space complexity: 2^{:.2}", sliced_comp.sc);- Examples: See
examples/for complete working examples - Troubleshooting: See the troubleshooting guide
- API Reference: Python & Rust API docs
Iteratively contracts the tensor pair with minimum cost:
use omeco::{EinCode, optimize_code, GreedyMethod};
let code = EinCode::new(
vec![vec!['a', 'b'], vec!['b', 'c'], vec!['c', 'd']],
vec!['a', 'd']
);
let sizes = omeco::uniform_size_dict(&code, 10);
// Default: deterministic greedy
let result = optimize_code(&code, &sizes, &GreedyMethod::default());
// Stochastic greedy with temperature
let stochastic = GreedyMethod::new(0.0, 1.0);
let result = optimize_code(&code, &sizes, &stochastic);Parameters:
alpha: Balances output size vs input size reduction (0.0 to 1.0)temperature: Enables Boltzmann sampling (0.0 = deterministic)
Simulated annealing with local tree mutations:
use omeco::{EinCode, optimize_code, TreeSA, ScoreFunction};
let code = EinCode::new(
vec![vec!['i', 'j'], vec!['j', 'k'], vec!['k', 'l'], vec!['l', 'm']],
vec!['i', 'm']
);
let sizes = omeco::uniform_size_dict(&code, 10);
// Fast configuration (fewer iterations)
let result = optimize_code(&code, &sizes, &TreeSA::fast());
// Default configuration (higher quality)
let result = optimize_code(&code, &sizes, &TreeSA::default());
// Custom configuration with space constraint
let custom = TreeSA::default()
.with_sc_target(15.0) // Target space complexity
.with_ntrials(20); // More parallel trials
let result = optimize_code(&code, &sizes, &custom);Parameters:
betas: Inverse temperature schedulentrials: Number of parallel trials (uses rayon)niters: Iterations per temperature levelscore: Scoring function with complexity weights
Three complexity metrics are computed (all in log2 scale):
use omeco::{EinCode, optimize_code, GreedyMethod, contraction_complexity};
let code = EinCode::new(
vec![vec!['i', 'j'], vec!['j', 'k']],
vec!['i', 'k']
);
let mut sizes = std::collections::HashMap::new();
sizes.insert('i', 100);
sizes.insert('j', 200);
sizes.insert('k', 100);
let optimized = optimize_code(&code, &sizes, &GreedyMethod::default()).unwrap();
let c = contraction_complexity(&optimized, &sizes, &code.ixs);
println!("Time complexity (FLOPs): 2^{:.2} = {:.2e}", c.tc, c.flops());
println!("Space complexity (memory): 2^{:.2} = {:.2e}", c.sc, c.peak_memory());
println!("Read-write complexity: 2^{:.2}", c.rwc);Control the trade-off between time and space complexity:
use omeco::{ScoreFunction, TreeSA};
// Optimize primarily for time (ignore space)
let time_score = ScoreFunction::time_optimized();
// Optimize for space with target of 2^15 elements
let space_score = ScoreFunction::space_optimized(15.0);
// Custom weights
let custom_score = ScoreFunction::new(
1.0, // tc_weight
2.0, // sc_weight (penalize space more)
0.0, // rw_weight
20.0, // sc_target
);
let config = TreeSA {
score: custom_score,
..TreeSA::default()
};The optimized result is a NestedEinsum representing the contraction tree:
use omeco::{EinCode, NestedEinsum, optimize_code, GreedyMethod};
let code = EinCode::new(
vec![vec!['i', 'j'], vec!['j', 'k'], vec!['k', 'l']],
vec!['i', 'l']
);
let sizes = omeco::uniform_size_dict(&code, 10);
let tree = optimize_code(&code, &sizes, &GreedyMethod::default()).unwrap();
// Inspect the tree
println!("Is binary tree: {}", tree.is_binary());
println!("Number of tensors: {}", tree.leaf_count());
println!("Tree depth: {}", tree.depth());
// Get contraction order (leaf indices)
let order = tree.leaf_indices();
println!("Contraction involves tensors: {:?}", order);For memory-constrained scenarios, use SlicedEinsum:
use omeco::{NestedEinsum, SlicedEinsum, sliced_complexity};
// Assume we have an optimized tree
let leaf0 = NestedEinsum::<char>::leaf(0);
let leaf1 = NestedEinsum::<char>::leaf(1);
let eins = omeco::EinCode::new(
vec![vec!['i', 'j'], vec!['j', 'k']],
vec!['i', 'k']
);
let tree = NestedEinsum::node(vec![leaf0, leaf1], eins.clone());
// Slice over index 'j' to reduce memory
let sliced = SlicedEinsum::new(vec!['j'], tree);
println!("Number of slices: {}", sliced.num_slices());For programmatic use, integer labels are often more convenient:
use omeco::{EinCode, optimize_code, GreedyMethod};
use std::collections::HashMap;
// Using usize labels instead of char
let code: EinCode<usize> = EinCode::new(
vec![vec![0, 1], vec![1, 2], vec![2, 3]],
vec![0, 3]
);
let mut sizes = HashMap::new();
sizes.insert(0, 100);
sizes.insert(1, 200);
sizes.insert(2, 200);
sizes.insert(3, 100);
let result = optimize_code(&code, &sizes, &GreedyMethod::default());- Use TreeSA::fast() for quick results - Fewer iterations, single trial
- Increase ntrials for large problems - More parallel exploration
- Set sc_target based on available memory - Constrains space complexity
- Use GreedyMethod for very large networks - O(n² log n) vs O(n² × iterations)
We benchmark TreeSA performance by comparing the Rust implementation (exposed to Python via PyO3) against the original Julia implementation (OMEinsumContractionOrders.jl).
Hardware: Intel Xeon Gold 6226R @ 2.90GHz
Configuration: ntrials=1, niters=50-100, βs=0.01:0.05:15.0
| Problem | Tensors | Indices | Rust (ms) | Julia (ms) | Rust tc | Julia tc | Speedup |
|---|---|---|---|---|---|---|---|
| chain_10 | 10 | 11 | 22.9 | 31.6 | 23.10 | 23.10 | 1.38x |
| grid_4x4 | 16 | 24 | 132.4 | 150.7 | 9.18 | 9.26 | 1.14x |
| grid_5x5 | 25 | 40 | 264.0 | 297.7 | 10.96 | 10.96 | 1.13x |
| reg3_250 | 250 | 372 | 4547 | 5099 | 48.01 | 47.17 | 1.12x |
Key observations:
- Rust is 10-40% faster than Julia for TreeSA optimization
- Both implementations find solutions with comparable time complexity (tc)
- The
reg3_250benchmark (random 3-regular graph with 250 nodes) shows TreeSA reduces tc from ~66 (greedy) to ~48, a 27% improvement
To run the benchmarks yourself:
# Rust (via Python)
cd benchmarks && python benchmark_python.py
# Julia
cd benchmarks && julia --project=. benchmark_julia.jlMIT