Skip to content

[Question]: Why can't the KG built through Python execution be seen in the LightRAG Server? #1259

@tigflanker

Description

@tigflanker

Do you need to ask a question?

  • I have searched the existing question and discussions and this question is not already answered.
  • I believe this is a legitimate question, not just a bug or feature request.

Your Question

Hello. I have successfully installed and started LightRAG and the Server, and I was also able to upload documents via the UI and parse out the KG through the pipeline. However, when I switched to another method (uploading documents via Python code), after the parsing was completed, I did not see the KG. My steps are as follows:

  1. I created a new project directory, created a .env file, and ran lightrag-server in the project directory.
  2. I ran the RAG initialization code in Python, and uploaded and parsed the documents (it took an hour to parse 10 documents). The code is as follows:
import asyncio
import nest_asyncio

# 在 Jupyter Notebook 中启用嵌套的事件循环
nest_asyncio.apply()

import os
import inspect
import logging
from lightrag import LightRAG, QueryParam
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
from lightrag.utils import EmbeddingFunc
from lightrag.kg.shared_storage import initialize_pipeline_status

# 设置工作目录
WORKING_DIR = "/data/github/LightRAG/znkf"

# 配置日志
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)

# 初始化 RAG 实例
async def initialize_rag():
    rag = LightRAG(
        working_dir=WORKING_DIR,
        llm_model_func=ollama_model_complete,
        llm_model_name="qwen2.5:14b",
        llm_model_max_async=2,
        llm_model_max_token_size=32768,
        llm_model_kwargs={
            "host": "http://localhost:11434",
            "options": {"num_ctx": 32768},
        },
        embedding_func=EmbeddingFunc(
            embedding_dim=1024,
            max_token_size=512,
            func=lambda texts: ollama_embed(
                texts, embed_model="quentinz/bge-large-zh-v1.5:latest", host="http://localhost:11434"
            ),
        ),
        addon_params={
            "language": "Simplified Chinese", 
            "entity_types": ["产品系列", "手机品牌", "服务类型", "公司", "支付方式", "产品名称", "城市名", 
                             "电话号码", "日期", "卡片类型", "优惠政策", "金额"], 
        }
    )

    await rag.initialize_storages()
    await initialize_pipeline_status()

    return rag

# 初始化 RAG 实例
loop = asyncio.get_event_loop()  # 获取当前事件循环
rag = loop.run_until_complete(initialize_rag())

# 初始构建KG
file_path = '/data/notebooks/knowledge/kg/kg_test'
file_list = []
for root, _, files in os.walk(file_path):
    for file in files:
        if any(file.endswith(ext) for ext in [".md", ".txt"]):
            filex = os.path.abspath(os.path.join(root, file))
            print(f">>> 文件 {filex} 处理中...")
            file_list.append(filex)
            with open(filex, "r", encoding="utf-8") as f:
                rag.insert(f.read())
  1. I can see the generated documents in my project directory, but I don't see any results in the UI.

Image
Image
Image

Additional Context

中文表述:

您好。我已经成功的安装并启动LightRAG以及Server,并且也成功的通过UI上传文档并通过pipeline解析出KG。但是当我换了一个方式(通过python代码进行文档上传),最终解析完成后却没有看到KG。
我的步骤是这样的:

  1. 我新建了项目目录,新建了.env,并且在项目目录下运行了lightrag-server
  2. 我在python中运行了rag初始化代码,并且上传和解析文档(一共10个文档解析了一个小时)。代码如下:
    代码如上
  3. 我能从我的项目目录看到已经生成的文档,但是我在UI中没有看到任何结果。(截图如上)

Metadata

Metadata

Assignees

No one assigned

    Labels

    questionFurther information is requested

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions