This repository contains few-shot learning (FSL) papers mentioned in our FSL survey published in ACM Computing Surveys (JCR Q1, CORE A*).
For convenience, we also include public implementations of respective authors.
We will update this paper list to include new FSL papers periodically. The current version is updated on 2021.02.04.
Please cite our paper if you find it helpful.
@article{wang2020generalizing,
title={Generalizing from a few examples: A survey on few-shot learning},
author={Wang, Yaqing and Yao, Quanming and Kwok, James T and Ni, Lionel M},
journal={ACM Computing Surveys},
volume={53},
number={3},
pages={1--34},
year={2020},
publisher={ACM New York, NY, USA}
}
- Survey
- Data
- Model
- Algorithm
- Applications
- Theories
- Data Sets
- Few-shot Learning and Zero-shot Learning
- Software Library
- Generalizing from a few examples: A survey on few-shot learning, CSUR, 2020 Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni. paper arXiv
-
Learning from one example through shared densities on transforms, in CVPR, 2000. E. G. Miller, N. E. Matsakis, and P. A. Viola. paper
-
Domain-adaptive discriminative one-shot learning of gestures, in ECCV, 2014. T. Pfister, J. Charles, and A. Zisserman. paper
-
One-shot learning of scene locations via feature trajectory transfer, in CVPR, 2016. R. Kwitt, S. Hegenbart, and M. Niethammer. paper
-
Low-shot visual recognition by shrinking and hallucinating features, in ICCV, 2017. B. Hariharan and R. Girshick. paper code
-
Improving one-shot learning through fusing side information, arXiv preprint, 2017. Y.H.Tsai and R.Salakhutdinov. paper
-
Fast parameter adaptation for few-shot image captioning and visual question answering, in ACM MM, 2018. X. Dong, L. Zhu, D. Zhang, Y. Yang, and F. Wu. paper
-
Exploit the unknown gradually: One-shot video-based person re-identification by stepwise learning, in CVPR, 2018. Y. Wu, Y. Lin, X. Dong, Y. Yan, W. Ouyang, and Y. Yang. paper
-
Low-shot learning with large-scale diffusion, in CVPR, 2018. M. Douze, A. Szlam, B. Hariharan, and H. Jégou. paper
-
Diverse few-shot text classification with multiple metrics, in NAACL-HLT, 2018. M. Yu, X. Guo, J. Yi, S. Chang, S. Potdar, Y. Cheng, G. Tesauro, H. Wang, and B. Zhou. paper code
-
Delta-encoder: An effective sample synthesis method for few-shot object recognition, in NeurIPS, 2018. E. Schwartz, L. Karlinsky, J. Shtok, S. Harary, M. Marder, A. Kumar, R. Feris, R. Giryes, and A. Bronstein. paper
-
Low-shot learning via covariance-preserving adversarial augmentation networks, in NeurIPS, 2018. H. Gao, Z. Shou, A. Zareian, H. Zhang, and S. Chang. paper
-
Learning to self-train for semi-supervised few-shot classification, in NeurIPS, 2019. X. Li, Q. Sun, Y. Liu, S. Zheng, Q. Zhou, T.-S. Chua, and B. Schiele. paper
-
Few-shot learning with global class representations, in ICCV, 2019. A. Li, T. Luo, T. Xiang, W. Huang, and L. Wang. paper
-
AutoAugment: Learning augmentation policies from data, in CVPR, 2019. E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le. paper
-
EDA: Easy data augmentation techniques for boosting performance on text classification tasks, in EMNLP and IJCNLP, 2019. J. Wei and K. Zou. paper
-
LaSO: Label-set operations networks for multi-label few-shot learning, in CVPR, 2019. A. Alfassy, L. Karlinsky, A. Aides, J. Shtok, S. Harary, R. Feris, R. Giryes, and A. M. Bronstein. paper
-
Image deformation meta-networks for one-shot learning, in CVPR, 2019. Z. Chen, Y. Fu, Y.-X. Wang, L. Ma, W. Liu, and M. Hebert. paper code
-
Spot and learn: A maximum-entropy patch sampler for few-shot image classification, in CVPR, 2019. W.-H. Chu, Y.-J. Li, J.-C. Chang, and Y.-C. F. Wang. paper
-
Data augmentation using learned transformations for one-shot medical image segmentation, in CVPR, 2019. A. Zhao, G. Balakrishnan, F. Durand, J. V. Guttag, and A. V. Dalca. paper
-
Adversarial feature hallucination networks for few-shot learning, in CVPR, 2020. K. Li, Y. Zhang, K. Li, and Y. Fu. paper
-
Instance credibility inference for few-shot learning, in CVPR, 2020. Y. Wang, C. Xu, C. Liu, L. Zhang, and Y. Fu. paper
-
Diversity transfer network for few-shot learning, in AAAI, 2020. M. Chen, Y. Fang, X. Wang, H. Luo, Y. Geng, X. Zhang, C. Huang, W. Liu, and B. Wang. paper code
-
Neural snowball for few-shot relation learning, in AAAI, 2020. T. Gao, X. Han, R. Xie, Z. Liu, F. Lin, L. Lin, and M. Sun. paper code
-
Associative alignment for few-shot image classification, in ECCV, 2020. A. Afrasiyabi, J. Lalonde, and C. Gagné. paper code
-
Self-training for few-shot transfer across extreme task differences, in ICLR, 2021. C. P. Phoo, and B. Hariharan. paper
-
Information maximization for few-shot learning, in NeurIPS, 2020. M. Boudiaf, I. Ziko, J. Rony, J. Dolz, P. Piantanida, and I. B. Ayed. paper code
-
Free lunch for few-shot learning: Distribution calibration, in ICLR, 2021. S. Yang, L. Liu, and M. Xu. paper code
-
Multi-task transfer methods to improve one-shot learning for multimedia event detection, in BMVC, 2015. W. Yan, J. Yap, and G. Mori. paper
-
Label efficient learning of transferable representations across domains and tasks, in NeurIPS, 2017. Z. Luo, Y. Zou, J. Hoffman, and L. Fei-Fei. paper
-
Multi-content GAN for few-shot font style transfer, in CVPR, 2018. S. Azadi, M. Fisher, V. G. Kim, Z. Wang, E. Shechtman, and T. Darrell. paper code
-
Feature space transfer for data augmentation, in CVPR, 2018. B. Liu, X. Wang, M. Dixit, R. Kwitt, and N. Vasconcelos. paper
-
One-shot unsupervised cross domain translation, in NeurIPS, 2018. S. Benaim and L. Wolf. paper
-
Fine-grained visual categorization using meta-learning optimization with sample selection of auxiliary data, in ECCV, 2018. Y. Zhang, H. Tang, and K. Jia. paper
-
Few-shot charge prediction with discriminative legal attributes, in COLING, 2018. Z. Hu, X. Li, C. Tu, Z. Liu, and M. Sun. paper
-
Few-shot adversarial domain adaptation, in NeurIPS, 2017. S. Motiian, Q. Jones, S. Iranmanesh, and G. Doretto. paper
-
Bidirectional one-shot unsupervised domain mapping, in ICCV, 2019. T. Cohen, and L. Wolf paper
-
Boosting few-shot visual learning with self-supervision, in ICCV, 2019. S. Gidaris, A. Bursuc, N. Komodakis, P. Pérez, and M. Cord paper
-
When does self-supervision improve few-shot learning?, in ECCV, 2020. J. Su, S. Maji, and B. Hariharan. paper
-
Object classification from a single example utilizing class relevance metrics, in NeurIPS, 2005. M. Fink. paper
-
Few-shot learning through an information retrieval lens, in NeurIPS, 2017. E. Triantafillou, R. Zemel, and R. Urtasun. paper
-
Optimizing one-shot recognition with micro-set learning, in CVPR, 2010. K. D. Tang, M. F. Tappen, R. Sukthankar, and C. H. Lampert. paper
-
Siamese neural networks for one-shot image recognition, ICML deep learning workshop, 2015. G. Koch, R. Zemel, and R. Salakhutdinov paper
-
Matching networks for one shot learning, in NeurIPS, 2016. O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al. paper
-
Learning feed-forward one-shot learners, in NeurIPS, 2016. L. Bertinetto, J. F. Henriques, J. Valmadre, P. Torr, and A. Vedaldi. paper
-
Low data drug discovery with one-shot learning, ACS Central Science, 2017. H. Altae-Tran, B. Ramsundar, A. S. Pappu, and V. Pande. paper
-
Prototypical networks for few-shot learning, in NeurIPS, 2017. J. Snell, K. Swersky, and R. S. Zemel. paper code
-
Attentive recurrent comparators, in ICML, 2017. P. Shyam, S. Gupta, and A. Dukkipati. paper
-
Learning algorithms for active learning, in ICML, 2017. P. Bachman, A. Sordoni, and A. Trischler. paper
-
Active one-shot learning, arXiv preprint, 2017. M. Woodward and C. Finn. paper
-
Structured set matching networks for one-shot part labeling, in CVPR, 2018. J. Choi, J. Krishnamurthy, A. Kembhavi, and A. Farhadi. paper
-
Low-shot learning from imaginary data, in CVPR, 2018. Y.-X. Wang, R. Girshick, M. Hebert, and B. Hariharan. paper
-
Learning to compare: Relation network for few-shot learning, in CVPR, 2018. F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales. paper code
-
Dynamic conditional networks for few-shot learning, in ECCV, 2018. F. Zhao, J. Zhao, S. Yan, and J. Feng. paper code
-
Tadam: Task dependent adaptive metric for improved few-shot learning, in NeurIPS, 2018. B. Oreshkin, P. R. López, and A. Lacoste. paper
-
Meta-learning for semi-supervised few-shot classification, in ICLR, 2018. M. Ren, S. Ravi, E. Triantafillou, J. Snell, K. Swersky, J. B. Tenen- baum, H. Larochelle, and R. S. Zemel. paper code
-
Few-shot learning with graph neural networks, in ICLR, 2018. V. G. Satorras and J. B. Estrach. paper code
-
A simple neural attentive meta-learner, in ICLR, 2018. N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel. paper
-
Meta-learning with differentiable closed-form solvers, in ICLR, 2019. L. Bertinetto, J. F. Henriques, P. Torr, and A. Vedaldi. paper
-
Learning to propagate labels: Transductive propagation network for few-shot learning, in ICLR, 2019. Y. Liu, J. Lee, M. Park, S. Kim, E. Yang, S. Hwang, and Y. Yang. paper code
-
Multi-level matching and aggregation network for few-shot relation classification, in ACL, 2019. Z.-X. Ye, and Z.-H. Ling. paper
-
Induction networks for few-shot text classification, in EMNLP, 2019. R. Geng, B. Li, Y. Li, X. Zhu, P. Jian, and J. Sun. paper
-
Hierarchical attention prototypical networks for few-shot text classification, in EMNLP, 2019. S. Sun, Q. Sun, K. Zhou, and T. Lv. paper
-
Cross attention network for few-shot classification, in NeurIPS, 2019. R. Hou, H. Chang, B. Ma, S. Shan, and X. Chen. paper
-
Hybrid attention-based prototypical networks for noisy few-shot relation classification, in AAAI, 2019. T. Gao, X. Han, Z. Liu, and M. Sun. paper code
-
Attention-based multi-context guiding for few-shot semantic segmentation, in AAAI, 2019. T. Hu, P. Yang, C. Zhang, G. Yu, Y. Mu and C. G. M. Snoek. paper
-
Distribution consistency based covariance metric networks for few-shot learning, in AAAI, 2019. W. Li, L. Wang, J. Xu, J. Huo, Y. Gao and J. Luo. paper
-
A dual attention network with semantic embedding for few-shot learning, in AAAI, 2019. S. Yan, S. Zhang, and X. He. paper
-
TapNet: Neural network augmented with task-adaptive projection for few-shot learning, in ICML, 2019. S. W. Yoon, J. Seo, and J. Moon. paper
-
Prototype propagation networks (PPN) for weakly-supervised few-shot learning on category graph, in IJCAI, 2019. L. Liu, T. Zhou, G. Long, J. Jiang, L. Yao, C. Zhang. paper code
-
Collect and select: Semantic alignment metric learning for few-shot learning, in ICCV, 2019. F. Hao, F. He, J. Cheng, L. Wang, J. Cao, and D. Tao. paper
-
Transductive episodic-wise adaptive metric for few-shot learning, in ICCV, 2019. L. Qiao, Y. Shi, J. Li, Y. Wang, T. Huang, and Y. Tian. paper
-
Few-shot learning with embedded class models and shot-free meta training, in ICCV, 2019. A. Ravichandran, R. Bhotika, and S. Soatto. paper
-
PARN: Position-aware relation networks for few-shot learning, in ICCV, 2019. Z. Wu, Y. Li, L. Guo, and K. Jia. paper
-
PANet: Few-shot image semantic segmentation with prototype alignment, in ICCV, 2019. K. Wang, J. H. Liew, Y. Zou, D. Zhou, and J. Feng. paper code
-
RepMet: Representative-based metric learning for classification and few-shot object detection, in CVPR, 2019. L. Karlinsky, J. Shtok, S. Harary, E. Schwartz, A. Aides, R. Feris, R. Giryes, and A. M. Bronstein. paper code
-
Edge-labeling graph neural network for few-shot learning, in CVPR, 2019. J. Kim, T. Kim, S. Kim, and C. D. Yoo. paper
-
Finding task-relevant features for few-shot learning by category traversal, in CVPR, 2019. H. Li, D. Eigen, S. Dodge, M. Zeiler, and X. Wang. paper code
-
Revisiting local descriptor based image-to-class measure for few-shot learning, in CVPR, 2019. W. Li, L. Wang, J. Xu, J. Huo, Y. Gao, and J. Luo. paper code
-
TAFE-Net: Task-aware feature embeddings for low shot learning, in CVPR, 2019. X. Wang, F. Yu, R. Wang, T. Darrell, and J. E. Gonzalez. paper code
-
Improved few-shot visual classification, in CVPR, 2020. P. Bateni, R. Goyal, V. Masrani, F. Wood, and L. Sigal. paper
-
Boosting few-shot learning with adaptive margin loss, in CVPR, 2020. A. Li, W. Huang, X. Lan, J. Feng, Z. Li, and L. Wang. paper
-
Adaptive subspaces for few-shot learning, in CVPR, 2020. C. Simon, P. Koniusz, R. Nock, and M. Harandi. paper
-
DPGN: Distribution propagation graph network for few-shot learning, in CVPR, 2020. L. Yang, L. Li, Z. Zhang, X. Zhou, E. Zhou, and Y. Liu. paper
-
Few-shot learning via embedding adaptation with set-to-set functions, in CVPR, 2020. H.-J. Ye, H. Hu, D.-C. Zhan, and F. Sha. paper code
-
DeepEMD: Few-shot image classification with differentiable earth mover's distance and structured classifiers, in CVPR, 2020. C. Zhang, Y. Cai, G. Lin, and C. Shen. paper code
-
Few-shot text classification with distributional signatures, in ICLR, 2020. Y. Bao, M. Wu, S. Chang, and R. Barzilay. paper code
-
Cross-domain few-shot classification via learned feature-wise transformation, in ICLR, 2020. H. Tseng, H. Lee, J. Huang, and M. Yang. paper code
-
Learning task-aware local representations for few-shot learning, in IJCAI, 2020. C. Dong, W. Li, J. Huo, Z. Gu, and Y. Gao. paper
-
SimPropNet: Improved similarity propagation for few-shot image segmentation, in IJCAI, 2020. S. Gairola, M. Hemani, A. Chopra, and B. Krishnamurthy. paper
-
Asymmetric distribution measure for few-shot learning, in IJCAI, 2020. W. Li, L. Wang, J. Huo, Y. Shi, Y. Gao, and J. Luo. paper
-
Transductive relation-propagation network for few-shot learning, in IJCAI, 2020. Y. Ma, S. Bai, S. An, W. Liu, A. Liu, X. Zhen, and X. Liu. paper
-
Weakly supervised few-shot object segmentation using co-attention with visual and semantic embeddings, in IJCAI, 2020. M. Siam, N. Doraiswamy, B. N. Oreshkin, H. Yao, and M. Jägersand. paper
-
Few-shot learning on graphs via super-classes based on graph spectral measures, in ICLR, 2020. J. Chauhan, D. Nathani, and M. Kaul. paper
-
SGAP-Net: Semantic-guided attentive prototypes network for few-shot human-object interaction recognition, in AAAI, 2020. Z. Ji, X. Liu, Y. Pang, and X. Li. paper
-
One-shot image classification by learning to restore prototypes, in AAAI, 2020. W. Xue, and W. Wang. paper
-
Negative margin matters: Understanding margin in few-shot classification, in ECCV, 2020. B. Liu, Y. Cao, Y. Lin, Q. Li, Z. Zhang, M. Long, and H. Hu. paper code
-
Prototype rectification for few-shot learning, in ECCV, 2020. J. Liu, L. Song, and Y. Qin. paper
-
Rethinking few-shot image classification: A good embedding is all you need?, in ECCV, 2020. Y. Tian, Y. Wang, D. Krishnan, J. B. Tenenbaum, and P. Isola. paper code
-
SEN: A novel feature normalization dissimilarity measure for prototypical few-shot learning networks, in ECCV, 2020. V. N. Nguyen, S. Løkse, K. Wickstrøm, M. Kampffmeyer, D. Roverso, and R. Jenssen. paper
-
TAFSSL: Task-adaptive feature sub-space learning for few-shot classification, in ECCV, 2020. M. Lichtenstein, P. Sattigeri, R. Feris, R. Giryes, and L. Karlinsky. paper
-
Attentive prototype few-shot learning with capsule network-based embedding, in ECCV, 2020. F. Wu, J. S.Smith, W. Lu, C. Pang, and B. Zhang. paper
-
Embedding propagation: Smoother manifold for few-shot classification, in ECCV, 2020. P. Rodríguez, I. Laradji, A. Drouin, and A. Lacoste. paper code
-
XtarNet: Learning to extract task-adaptive representation for incremental few-shot learning, in ICML, 2020:. S. W. Yoon, D. Kim, J. Seo, and J. Moon. paper code
-
Laplacian regularized few-shot learning, in ICML, 2020. I. M. Ziko, J. Dolz, E. Granger, and I. B. Ayed. paper code
-
Meta-learning with memory-augmented neural networks, in ICML, 2016. A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. paper
-
Few-shot object recognition from machine-labeled web images, in CVPR, 2017. Z. Xu, L. Zhu, and Y. Yang. paper
-
Learning to remember rare events, in ICLR, 2017. Ł. Kaiser, O. Nachum, A. Roy, and S. Bengio. paper
-
Meta networks, in ICML, 2017. T. Munkhdalai and H. Yu. paper
-
Memory matching networks for one-shot image recognition, in CVPR, 2018. Q. Cai, Y. Pan, T. Yao, C. Yan, and T. Mei. paper
-
Compound memory networks for few-shot video classification, in ECCV, 2018. L. Zhu and Y. Yang. paper
-
Memory, show the way: Memory based few shot word representation learning, in EMNLP, 2018. J. Sun, S. Wang, and C. Zong. paper
-
Rapid adaptation with conditionally shifted neurons, in ICML, 2018. T. Munkhdalai, X. Yuan, S. Mehri, and A. Trischler. paper
-
Adaptive posterior learning: Few-shot learning with a surprise-based memory module, in ICLR, 2019. T. Ramalho and M. Garnelo. paper code
-
Coloring with limited data: Few-shot colorization via memory augmented networks, in CVPR, 2019. S. Yoo, H. Bahng, S. Chung, J. Lee, J. Chang, and J. Choo. paper
-
ACMM: Aligned cross-modal memory for few-shot image and sentence matching, in ICCV, 2019. Y. Huang, and L. Wang. paper
-
Dynamic memory induction networks for few-shot text classification, in ACL, 2020. R. Geng, B. Li, Y. Li, J. Sun, and X. Zhu. paper
-
Few-shot visual learning with contextual memory and fine-grained calibration, in IJCAI, 2020. Y. Ma, W. Liu, S. Bai, Q. Zhang, A. Liu, W. Chen, and X. Liu. paper
-
One-shot learning of object categories, TPAMI, 2006. L. Fei-Fei, R. Fergus, and P. Perona. paper
-
Learning to learn with compound HD models, in NeurIPS, 2011. A. Torralba, J. B. Tenenbaum, and R. R. Salakhutdinov. paper
-
One-shot learning with a hierarchical nonparametric bayesian model, in ICML Workshop on Unsupervised and Transfer Learning, 2012. R. Salakhutdinov, J. Tenenbaum, and A. Torralba. paper
-
Human-level concept learning through probabilistic program induction, Science, 2015. B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. paper
-
One-shot generalization in deep generative models, in ICML, 2016. D. Rezende, I. Danihelka, K. Gregor, and D. Wierstra. paper
-
One-shot video object segmentation, in CVPR, 2017. S. Caelles, K.-K. Maninis, J. Pont-Tuset, L. Leal-Taixé, D. Cremers, and L. Van Gool. paper
-
Towards a neural statistician, in ICLR, 2017. H. Edwards and A. Storkey. paper
-
Extending a parser to distant domains using a few dozen partially annotated examples, in ACL, 2018. V. Joshi, M. Peters, and M. Hopkins. paper
-
MetaGAN: An adversarial approach to few-shot learning, in NeurIPS, 2018. R. Zhang, T. Che, Z. Ghahramani, Y. Bengio, and Y. Song. paper
-
Few-shot autoregressive density estimation: Towards learning to learn distributions, in ICLR, 2018. S. Reed, Y. Chen, T. Paine, A. van den Oord, S. M. A. Eslami, D. Rezende, O. Vinyals, and N. de Freitas. paper
-
The variational homoencoder: Learning to learn high capacity generative models from few examples, in UAI, 2018. L. B. Hewitt, M. I. Nye, A. Gane, T. Jaakkola, and J. B. Tenenbaum. paper
-
Meta-learning probabilistic inference for prediction, in ICLR, 2019. J. Gordon, J. Bronskill, M. Bauer, S. Nowozin, and R. Turner. paper
-
Variational prototyping-encoder: One-shot learning with prototypical images, in CVPR, 2019. J. Kim, T.-H. Oh, S. Lee, F. Pan, and I. S. Kweon paper code
-
Variational few-shot learning, in ICCV, 2019. J. Zhang, C. Zhao, B. Ni, M. Xu, and X. Yang. paper
-
Infinite mixture prototypes for few-shot learning, in ICML, 2019. K. Allen, E. Shelhamer, H. Shin, and J. Tenenbaum. paper
-
Dual variational generation for low shot heterogeneous face recognition, in NeurIPS, 2019. C. Fu, X. Wu, Y. Hu, H. Huang, and R. He. paper
-
Bayesian meta sampling for fast uncertainty adaptation, in ICLR, 2020. Z. Wang, Y. Zhao, P. Yu, R. Zhang, and C. Chen. paper
-
Empirical Bayes transductive meta-learning with synthetic gradients, in ICLR, 2020. S. X. Hu, P. G. Moreno, Y. Xiao, X. Shen, G. Obozinski, N. D. Lawrence, and A. C. Damianou. paper
-
Few-shot relation extraction via bayesian meta-learning on relation graphs, in ICML, 2020. M. Qu, T. Gao, L. A. C. Xhonneux, and J. Tang. paper code
-
Interventional few-shot learning, in NeurIPS, 2020. Z. Yue, H. Zhang, Q. Sun, and X. Hua. paper code
-
Cross-generalization: Learning novel classes from a single example by feature replacement, in CVPR, 2005. E. Bart and S. Ullman. paper
-
One-shot adaptation of supervised deep convolutional models, in ICLR, 2013. J. Hoffman, E. Tzeng, J. Donahue, Y. Jia, K. Saenko, and T. Darrell. paper
-
Learning to learn: Model regression networks for easy small sample learning, in ECCV, 2016. Y.-X. Wang and M. Hebert. paper
-
Learning from small sample sets by combining unsupervised meta-training with CNNs, in NeurIPS, 2016. Y.-X. Wang and M. Hebert. paper
-
Efficient k-shot learning with regularized deep networks, in AAAI, 2018. D. Yoo, H. Fan, V. N. Boddeti, and K. M. Kitani. paper
-
CLEAR: Cumulative learning for one-shot one-class image recognition, in CVPR, 2018. J. Kozerawski and M. Turk. paper
-
Learning structure and strength of CNN filters for small sample size training, in CVPR, 2018. R. Keshari, M. Vatsa, R. Singh, and A. Noore. paper
-
Dynamic few-shot visual learning without forgetting, in CVPR, 2018. S. Gidaris and N. Komodakis. paper code
-
Low-shot learning with imprinted weights, in CVPR, 2018. H. Qi, M. Brown, and D. G. Lowe. paper
-
Neural voice cloning with a few samples, in NeurIPS, 2018. S. Arik, J. Chen, K. Peng, W. Ping, and Y. Zhou. paper
-
Text classification with few examples using controlled generalization, in NAACL-HLT, 2019. A. Mahabal, J. Baldridge, B. K. Ayan, V. Perot, and D. Roth. paper
-
Incremental few-shot learning with attention attractor networks, in NeurIPS, 2019. M. Ren, R. Liao, E. Fetaya, and R. S. Zemel. paper code
-
Low shot box correction for weakly supervised object detection, in IJCAI, 2019. T. Pan, B. Wang, G. Ding, J. Han, and J. Yong paper
-
Diversity with cooperation: Ensemble methods for few-shot classification, in ICCV, 2019. N. Dvornik, C. Schmid, and J. Mairal paper
-
Few-shot image recognition with knowledge transfer, in ICCV, 2019. Z. Peng, Z. Li, J. Zhang, Y. Li, G.-J. Qi, and J. Tang paper
-
Generating classification weights with gnn denoising autoencoders for few-shot learning, in CVPR, 2019. S. Gidaris, and N. Komodakis. paper code
-
Dense classification and implanting for few-shot learning, in CVPR, 2019. Y. Lifchitz, Y. Avrithis, S. Picard, and A. Bursuc paper
-
Few-shot adaptive faster R-CNN, in CVPR, 2019. T. Wang, X. Zhang, L. Yuan, and J. Feng paper
-
Few-shot class-incremental learning, in CVPR, 2020. X. Tao, X. Hong, X. Chang, S. Dong, X. Wei, and Y. Gong paper
-
TransMatch: A transfer-learning scheme for semi-supervised few-shot learning, in CVPR, 2020. Z. Yu, L. Chen, Z. Cheng, and J. Luo paper
-
Learning to select base classes for few-shot classification, in CVPR, 2020. L. Zhou, P. Cui, X. Jia, S. Yang, and Q. Tian paper
-
Few-shot NLG with pre-trained language model, in ACL, 2020. Z. Chen, H. Eavani, W. Chen, Y. Liu, and W. Y. Wang. paper code
-
Span-ConveRT: Few-shot span extraction for dialog with pretrained conversational representations, in ACL, 2020. S. Coope, T. Farghly, D. Gerz, I. Vulic, and M. Henderson. paper
-
A baseline for few-shot image classification, in ICLR, 2020. G. S. Dhillon, P. Chaudhari, A. Ravichandran, and S. Soatto. paper
-
Graph few-shot learning via knowledge transfer, in AAAI, 2020. H. Yao, C. Zhang, Y. Wei, M. Jiang, S. Wang, J. Huang, N. V. Chawla, and Z. Li. paper
-
Knowledge graph transfer network for few-shot recognition, in AAAI, 2020. R. Chen, T. Chen, X. Hui, H. Wu, G. Li, and L. Lin. paper
-
Context-Transformer: Tackling object confusion for few-shot detection, in AAAI, 2020. Z. Yang, Y. Wang, X. Chen, J. Liu, and Y. Qiao. paper
-
Selecting relevant features from a multi-domain representation for few-shot classification, in ECCV, 2020. N. Dvornik, C. Schmid, and J. Mairal. paper code
-
Model-agnostic meta-learning for fast adaptation of deep networks, in ICML, 2017. C. Finn, P. Abbeel, and S. Levine. paper
-
Bayesian model-agnostic meta-learning, in NeurIPS, 2018. J. Yoon, T. Kim, O. Dia, S. Kim, Y. Bengio, and S. Ahn. paper
-
Probabilistic model-agnostic meta-learning, in NeurIPS, 2018. C. Finn, K. Xu, and S. Levine. paper
-
Gradient-based meta-learning with learned layerwise metric and subspace, in ICML, 2018. Y. Lee and S. Choi. paper
-
Recasting gradient-based meta-learning as hierarchical Bayes, in ICLR, 2018. E. Grant, C. Finn, S. Levine, T. Darrell, and T. Griffiths. paper
-
Few-shot human motion prediction via meta-learning, in ECCV, 2018. L.-Y. Gui, Y.-X. Wang, D. Ramanan, and J. Moura. paper
-
The effects of negative adaptation in model-agnostic meta-learning, arXiv preprint, 2018. T. Deleu and Y. Bengio. paper
-
Unsupervised meta-learning for few-shot image classification, in NeurIPS, 2019. S. Khodadadeh, L. Bölöni, and M. Shah. paper
-
Amortized bayesian meta-learning, in ICLR, 2019. S. Ravi and A. Beatson. paper
-
Meta-learning with latent embedding optimization, in ICLR, 2019. A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero, and R. Hadsell. paper code
-
Meta relational learning for few-shot link prediction in knowledge graphs, in EMNLP, 2019. M. Chen, W. Zhang, W. Zhang, Q. Chen, and H. Chen. paper
-
Adapting meta knowledge graph information for multi-hop reasoning over few-shot relations, in EMNLP, 2019. X. Lv, Y. Gu, X. Han, L. Hou, J. Li, and Z. Liu. paper
-
LGM-Net: Learning to generate matching networks for few-shot learning, in ICML, 2019. H. Li, W. Dong, X. Mei, C. Ma, F. Huang, and B.-G. Hu. paper code
-
Meta R-CNN: Towards general solver for instance-level low-shot learning, in ICCV, 2019. X. Yan, Z. Chen, A. Xu, X. Wang, X. Liang, and L. Lin. paper
-
Task agnostic meta-learning for few-shot learning, in CVPR, 2019. M. A. Jamal, and G.-J. Qi. paper
-
Meta-transfer learning for few-shot learning, in CVPR, 2019. Q. Sun, Y. Liu, T.-S. Chua, and B. Schiele. paper code
-
Meta-learning of neural architectures for few-shot learning, in CVPR, 2020. T. Elsken, B. Staffler, J. H. Metzen, and F. Hutter. paper
-
Attentive weights generation for few shot learning via information maximization, in CVPR, 2020. Y. Guo, and N.-M. Cheung. paper
-
Few-shot open-set recognition using meta-learning, in CVPR, 2020. B. Liu, H. Kang, H. Li, G. Hua, and N. Vasconcelos. paper
-
Incremental few-shot object detection, in CVPR, 2020. J.-M. Perez-Rua, X. Zhu, T. M. Hospedales, and T. Xiang. paper
-
Automated relational meta-learning, in ICLR, 2020. H. Yao, X. Wu, Z. Tao, Y. Li, B. Ding, R. Li, and Z. Li. paper
-
Meta-learning with warped gradient descent, in ICLR, 2020. S. Flennerhag, A. A. Rusu, R. Pascanu, F. Visin, H. Yin, and R. Hadsell. paper
-
Meta-learning without memorization, in ICLR, 2020. M. Yin, G. Tucker, M. Zhou, S. Levine, and C. Finn. paper
-
ES-MAML: Simple Hessian-free meta learning, in ICLR, 2020. X. Song, W. Gao, Y. Yang, K. Choromanski, A. Pacchiano, and Y. Tang. paper
-
Self-supervised tuning for few-shot segmentation, in IJCAI, 2020. K. Zhu, W. Zhai, and Y. Cao. paper
-
Multi-attention meta learning for few-shot fine-grained image recognition, in IJCAI, 2020. Y. Zhu, C. Liu, and S. Jiang. paper
-
An ensemble of epoch-wise empirical Bayes for few-shot learning, in ECCV, 2020. Y. Liu, B. Schiele, and Q. Sun. paper code
-
Incremental few-shot meta-learning via indirect discriminant alignment, in ECCV, 2020. Q. Liu, O. Majumder, A. Achille, A. Ravichandran, R. Bhotika, and S. Soatto. paper
-
Model-agnostic boundary-adversarial sampling for test-time generalization in few-shot learning, in ECCV, 2020. J. Kim, H. Kim, and G. Kim. paper code
-
Bayesian meta-learning for the few-shot setting via deep kernels, in NeurIPS, 2020. M. Patacchiola, J. Turner, E. J. Crowley, M. O'Boyle, and A. J. Storkey. paper code
-
OOD-MAML: Meta-learning for few-shot out-of-distribution detection and classification, in NeurIPS, 2020. T. Jeong, and H. Kim. paper code
-
Unraveling meta-learning: Understanding feature representations for few-shot tasks, in ICML, 2020. M. Goldblum, S. Reich, L. Fowl, R. Ni, V. Cherepanova, and T. Goldstein. paper code
-
Node classification on graphs with few-shot novel labels via meta transformed network embedding, in NeurIPS, 2020. L. Lan, P. Wang, X. Du, K. Song, J. Tao, and X. Guan. paper
-
Adversarially robust few-shot learning: A meta-learning approach, in NeurIPS, 2020. M. Goldblum, L. Fowl, and T. Goldstein. paper code
-
Learning robust visual-semantic embeddings, in CVPR, 2017. Y.-H. Tsai, L.-K. Huang, and R. Salakhutdinov. paper
-
One-shot action localization by learning sequence matching network, in CVPR, 2018. H. Yang, X. He, and F. Porikli. paper
-
Incremental few-shot learning for pedestrian attribute recognition, in EMNLP, 2018. L. Xiang, X. Jin, G. Ding, J. Han, and L. Li. paper
-
Few-shot video-to-video synthesis, in NeurIPS, 2019. T.-C. Wang, M.-Y. Liu, A. Tao, G. Liu, J. Kautz, and B. Catanzaro. paper code
-
Few-shot object detection via feature reweighting, in ICCV, 2019. B. Kang, Z. Liu, X. Wang, F. Yu, J. Feng, and T. Darrell. paper code
-
Few-shot unsupervised image-to-image translation, in ICCV, 2019. M.-Y. Liu, X. Huang, A. Mallya, T. Karras, T. Aila, J. Lehtinen, and J. Kautz. paper code
-
Feature weighting and boosting for few-shot segmentation, in ICCV, 2019. K. Nguyen, and S. Todorovic. paper
-
Few-shot adaptive gaze estimation, in ICCV, 2019. S. Park, S. D. Mello, P. Molchanov, U. Iqbal, O. Hilliges, and J. Kautz. paper
-
AMP: Adaptive masked proxies for few-shot segmentation, in ICCV, 2019. M. Siam, B. N. Oreshkin, and M. Jagersand. paper code
-
Few-shot generalization for single-image 3D reconstruction via priors, in ICCV, 2019. B. Wallace, and B. Hariharan. paper
-
Few-shot adversarial learning of realistic neural talking head models, in ICCV, 2019. E. Zakharov, A. Shysheya, E. Burkov, and V. Lempitsky. paper code
-
Pyramid graph networks with connection attentions for region-based one-shot semantic segmentation, in ICCV, 2019. C. Zhang, G. Lin, F. Liu, J. Guo, Q. Wu, and R. Yao. paper
-
Time-conditioned action anticipation in one shot, in CVPR, 2019. Q. Ke, M. Fritz, and B. Schiele. paper
-
Few-shot learning with localization in realistic settings, in CVPR, 2019. D. Wertheimer, and B. Hariharan. paper code
-
Improving few-shot user-specific gaze adaptation via gaze redirection synthesis, in CVPR, 2019. Y. Yu, G. Liu, and J.-M. Odobez. paper
-
CANet: Class-agnostic segmentation networks with iterative refinement and attentive few-shot learning, in CVPR, 2019. C. Zhang, G. Lin, F. Liu, R. Yao, and C. Shen. paper code
-
3FabRec: Fast few-shot face alignment by reconstruction, in CVPR, 2020. B. Browatzki, and C. Wallraven. paper
-
Few-shot video classification via temporal alignment, in CVPR, 2020. K. Cao, J. Ji, Z. Cao, C.-Y. Chang, J. C. Niebles. paper
-
One-shot adversarial attacks on visual tracking with dual attention, in CVPR, 2020. X. Chen, X. Yan, F. Zheng, Y. Jiang, S.-T. Xia, Y. Zhao, and R. Ji. paper
-
FGN: Fully guided network for few-shot instance segmentation, in CVPR, 2020. Z. Fan, J.-G. Yu, Z. Liang, J. Ou, C. Gao, G.-S. Xia, and Y. Li. paper
-
CRNet: Cross-reference networks for few-shot segmentation, in CVPR, 2020. W. Liu, C. Zhang, G. Lin, and F. Liu. paper
-
Revisiting pose-normalization for fine-grained few-shot recognition, in CVPR, 2020. L. Tang, D. Wertheimer, and B. Hariharan. paper
-
Few-shot learning of part-specific probability space for 3D shape segmentation, in CVPR, 2020. L. Wang, X. Li, and Y. Fang. paper
-
Semi-supervised learning for few-shot image-to-image translation, in CVPR, 2020. Y. Wang, S. Khan, A. Gonzalez-Garcia, J. van de Weijer, and F. S. Khan. paper
-
Multi-domain learning for accurate and few-shot color constancy, in CVPR, 2020. J. Xiao, S. Gu, and L. Zhang. paper
-
One-shot domain adaptation for face generation, in CVPR, 2020. C. Yang, and S.-N. Lim. paper
-
MetaPix: Few-shot video retargeting, in ICLR, 2020. J. Lee, D. Ramanan, and R. Girdhar. paper
-
Few-shot human motion prediction via learning novel motion dynamics, in IJCAI, 2020. C. Zang, M. Pei, and Y. Kong. paper
-
Shaping visual representations with language for few-shot classification, in ACL, 2020. J. Mu, P. Liang, and N. D. Goodman. paper
-
MarioNETte: Few-shot face reenactment preserving identity of unseen targets, in AAAI, 2020. S. Ha, M. Kersner, B. Kim, S. Seo, and D. Kim. paper
-
One-shot learning for long-tail visual relation detection, in AAAI, 2020. W. Wang, M. Wang, S. Wang, G. Long, L. Yao, G. Qi, and Y. Chen. paper code
-
Differentiable meta-learning model for few-shot semantic segmentation, in AAAI, 2020. P. Tian, Z. Wu, L. Qi, L. Wang, Y. Shi, and Y. Gao. paper
-
Part-aware prototype network for few-shot semantic segmentation, in ECCV, 2020. Y. Liu, X. Zhang, S. Zhang, and X. He. paper code
-
Prototype mixture models for few-shot semantic segmentation, in ECCV, 2020. B. Yang, C. Liu, B. Li, J. Jiao, and Q. Ye. paper code
-
Self-supervision with superpixels: Training few-shot medical image segmentation without annotation, in ECCV, 2020. C. Ouyang, C. Biffi, C. Chen, T. Kart, H. Qiu, and D. Rueckert. paper code
-
Few-shot action recognition with permutation-invariant attention, in ECCV, 2020. H. Zhang, L. Zhang, X. Qi, H. Li, P. H. S. Torr, and P. Koniusz. paper
-
Few-shot compositional font generation with dual memory, in ECCV, 2020. J. Cha, S. Chun, G. Lee, B. Lee, S. Kim, and H. Lee. paper code
-
Few-shot object detection and viewpoint estimation for objects in the wild, in ECCV, 2020. Y. Xiao, and R. Marlet. paper
-
Few-shot scene-adaptive anomaly detection, in ECCV, 2020. Y. Lu, F. Yu, M. K. K. Reddy, and Y. Wang. paper code
-
Few-shot semantic segmentation with democratic attention networks, in ECCV, 2020. H. Wang, X. Zhang, Y. Hu, Y. Yang, X. Cao, and X. Zhen. paper
-
Few-shot single-view 3-D object reconstruction with compositional priors, in ECCV, 2020. M. Michalkiewicz, S. Parisot, S. Tsogkas, M. Baktashmotlagh, A. Eriksson, and E. Belilovsky. paper
-
COCO-FUNIT: Few-shot unsupervised image translation with a content conditioned style encoder, in ECCV, 2020. K. Saito, K. Saenko, and M. Liu. paper code
-
Deep complementary joint model for complex scene registration and few-shot segmentation on medical images, in ECCV, 2020. Y. He, T. Li, G. Yang, Y. Kong, Y. Chen, H. Shu, J. Coatrieux, J. Dillenseger, and S. Li. paper
-
Multi-scale positive sample refinement for few-shot object detection, in ECCV, 2020. J. Wu, S. Liu, D. Huang, and Y. Wang. paper code
-
Large-scale few-shot learning via multi-modal knowledge discovery, in ECCV, 2020. S. Wang, J. Yue, J. Liu, Q. Tian, and M. Wang. paper
-
Graph convolutional networks for learning with few clean and many noisy labels, in ECCV, 2020. A. Iscen, G. Tolias, Y. Avrithis, O. Chum, and C. Schmid. paper
-
Self-supervised few-shot learning on point clouds, in NeurIPS, 2020. C. Sharma, and M. Kaul. paper code
-
Restoring negative information in few-shot object detection, in NeurIPS, 2020. Y. Yang, F. Wei, M. Shi, and G. Li. paper code
-
Few-shot image generation with elastic weight consolidation, in NeurIPS, 2020. Y. Li, R. Zhang, J. (. Lu, and E. Shechtman. paper
-
Few-shot visual reasoning with meta-analogical contrastive learning, in NeurIPS, 2020. Y. Kim, J. Shin, E. Yang, and S. J. Hwang. paper
-
Crosstransformers: spatially-aware few-shot transfer, in NeurIPS, 2020. C. Doersch, A. Gupta, and A. Zisserman. paper
-
Make one-shot video object segmentation efficient again, in NeurIPS, 2020. T. Meinhardt, and L. Leal-Taixé. paper code
-
Frustratingly simple few-shot object detection, in ICML, 2020. X. Wang, T. E. Huang, J. Gonzalez, T. Darrell, and F. Yu. paper code
-
Adversarial style mining for one-shot unsupervised domain adaptation, in NeurIPS, 2020. Y. Luo, P. Liu, T. Guan, J. Yu, and Y. Yang. paper code
-
Towards one shot learning by imitation for humanoid robots, in ICRA, 2010. Y. Wu and Y. Demiris. paper
-
Learning manipulation actions from a few demonstrations, in ICRA, 2013. N. Abdo, H. Kretzschmar, L. Spinello, and C. Stachniss. paper
-
Learning assistive strategies from a few user-robot interactions: Model-based reinforcement learning approach, in ICRA, 2016. M. Hamaya, T. Matsubara, T. Noda, T. Teramae, and J. Morimoto. paper
-
One-shot imitation learning, in NeurIPS, 2017. Y. Duan, M. Andrychowicz, B. Stadie, J. Ho, J. Schneider, I. Sutskever, P. Abbeel, and W. Zaremba. paper
-
Continuous adaptation via meta-learning in nonstationary and competitive environments, in ICLR, 2018. M. Al-Shedivat, T. Bansal, Y. Burda, I. Sutskever, I. Mordatch, and P. Abbeel. paper
-
Deep online learning via meta-learning: Continual adaptation for model-based RL, in ICLR, 2018. A. Nagabandi, C. Finn, and S. Levine. paper
-
Meta-learning language-guided policy learning, in ICLR, 2019. J. D. Co-Reyes, A. Gupta, S. Sanjeev, N. Altieri, J. DeNero, P. Abbeel, and S. Levine. paper
-
Meta reinforcement learning with autonomous inference of subtask dependencies, in ICLR, 2020. S. Sohn, H. Woo, J. Choi, and H. Lee. paper
-
Watch, try, learn: Meta-learning from demonstrations and rewards, in ICLR, 2020. A. Zhou, E. Jang, D. Kappler, A. Herzog, M. Khansari, P. Wohlhart, Y. Bai, M. Kalakrishnan, S. Levine, and C. Finn. paper
-
Few-shot Bayesian imitation learning with logical program policies, in AAAI, 2020. T. Silver, K. R. Allen, A. K. Lew, L. P. Kaelbling, and J. Tenenbaum. paper
-
One solution is not all you need: Few-shot extrapolation via structured MaxEnt RL, in NeurIPS, 2020. S. Kumar, A. Kumar, S. Levine, and C. Finn. paper
-
High-risk learning: Acquiring new word vectors from tiny data, in EMNLP, 2017. A. Herbelot and M. Baroni. paper
-
Few-shot representation learning for out-of-vocabulary words, in ACL, 2019. Z. Hu, T. Chen, K.-W. Chang, and Y. Sun. paper
-
Learning to customize model structures for few-shot dialogue generation tasks, in ACL, 2020. Y. Song, Z. Liu, W. Bi, R. Yan, and M. Zhang. paper
-
Few-shot slot tagging with collapsed dependency transfer and label-enhanced task-adaptive projection network, in ACL, 2020. Y. Hou, W. Che, Y. Lai, Z. Zhou, Y. Liu, H. Liu, and T. Liu. paper
-
Meta-reinforced multi-domain state generator for dialogue systems, in ACL, 2020. Y. Huang, J. Feng, M. Hu, X. Wu, X. Du, and S. Ma. paper
-
Few-shot knowledge graph completion, in AAAI, 2020. C. Zhang, H. Yao, C. Huang, M. Jiang, Z. Li, and N. V. Chawla. paper
-
Universal natural language processing with limited annotations: Try few-shot textual entailment as a start, in EMNLP, 2020. W. Yin, N. F. Rajani, D. Radev, R. Socher, and C. Xiong. paper code
-
Simple and effective few-shot named entity recognition with structured nearest neighbor learning, in EMNLP, 2020. Y. Yang, and A. Katiyar. paper code
-
Discriminative nearest neighbor few-shot intent detection by transferring natural language inference, in EMNLP, 2020. J. Zhang, K. Hashimoto, W. Liu, C. Wu, Y. Wan, P. Yu, R. Socher, and C. Xiong. paper code
-
Few-shot learning for opinion summarization, in EMNLP, 2020. A. Bražinskas, M. Lapata, and I. Titov. paper code
-
Adaptive attentional network for few-shot knowledge graph completion, in EMNLP, 2020. J. Sheng, S. Guo, Z. Chen, J. Yue, L. Wang, T. Liu, and H. Xu. paper code
-
Few-shot complex knowledge base question answering via meta reinforcement learning, in EMNLP, 2020. Y. Hua, Y. Li, G. Haffari, G. Qi, and T. Wu. paper code
-
Self-supervised meta-learning for few-shot natural language classification tasks, in EMNLP, 2020. T. Bansal, R. Jha, T. Munkhdalai, and A. McCallum. paper code
-
Structural supervision improves few-shot learning and syntactic generalization in neural language models, in EMNLP, 2020. E. Wilcox, P. Qian, R. Futrell, R. Kohita, R. Levy, and M. Ballesteros. paper code
-
Language models are few-shot learners, in NeurIPS, 2020. T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. paper
-
Uncertainty-aware self-training for few-shot text classification, in NeurIPS, 2020. S. Mukherjee, and A. Awadallah. paper code
-
One-shot learning of generative speech concepts, in CogSci, 2014. B. Lake, C.-Y. Lee, J. Glass, and J. Tenenbaum. paper
-
Machine speech chain with one-shot speaker adaptation, INTERSPEECH, 2018. A. Tjandra, S. Sakti, and S. Nakamura. paper
-
Investigation of using disentangled and interpretable representations for one-shot cross-lingual voice conversion, INTERSPEECH, 2018. S. H. Mohammadi and T. Kim. paper
-
Few-shot audio classification with attentional graph neural networks, INTERSPEECH, 2019. S. Zhang, Y. Qin, K. Sun, and Y. Lin. paper
-
One-shot voice conversion with disentangled representations by leveraging phonetic posteriorgrams, INTERSPEECH, 2019. S. H. Mohammadi, and T. Kim. paper
-
One-shot voice conversion with global speaker embeddings, INTERSPEECH, 2019. H. Lu, Z. Wu, D. Dai, R. Li, S. Kang, J. Jia, and H. Meng. paper
-
One-shot voice conversion by separating speaker and content representations with instance normalization, INTERSPEECH, 2019. J.-C. Chou, and H.-Y. Lee. paper
-
A meta-learning perspective on cold-start recommendations for items, in NeurIPS, 2017. M. Vartak, A. Thiagarajan, C. Miranda, J. Bratman, and H. Larochelle. paper
-
SMASH: One-shot model architecture search through hypernetworks, in ICLR, 2018. A. Brock, T. Lim, J. Ritchie, and N. Weston. paper
-
AffnityNet: Semi-supervised few-shot learning for disease type prediction, in AAAI, 2019. T. Ma, and A. Zhang. paper
-
Few-shot pill recognition, in CVPR, 2020. S. Ling, A. Pastor, J. Li, Z. Che, J. Wang, J. Kim, and P. L. Callet. paper
-
LT-Net: Label transfer by learning reversible voxel-wise correspondence for one-shot medical image segmentation, in CVPR, 2020. S. Wang, S. Cao, D. Wei, R. Wang, K. Ma, L. Wang, D. Meng, and Y. Zheng. paper
-
Federated meta-learning for fraudulent credit card detection, in IJCAI, 2020. W. Zheng, L. Yan, C. Gou, and F. Wang. paper
-
Differentially private meta-learning, in ICLR, 2020. J. Li, M. Khodak, S. Caldas, and A. Talwalkar. paper
-
Towards fast adaptation of neural architectures with meta learning, in ICLR, 2020. D. Lian, Y. Zheng, Y. Xu, Y. Lu, L. Lin, P. Zhao, J. Huang, and S. Gao. paper
-
Learning to extrapolate knowledge: Transductive few-shot out-of-graph link prediction, in NeurIPS, 2020:. J. Baek, D. B. Lee, and S. J. Hwang. paper code
-
A theoretical analysis of the number of shots in few-shot learning, in ICLR, 2020. T. Cao, M. T. Law, and S. Fidler. paper
-
Rapid learning or feature reuse? Towards understanding the effectiveness of MAML, in ICLR, 2020. A. Raghu, M. Raghu, S. Bengio, and O. Vinyals. paper
-
Learning to learn around a common mean, in NeurIPS, 2018. G. Denevi, C. Ciliberto, D. Stamos, and M. Pontil. paper
-
Meta-learning and universality: Deep representations and gradient descent can approximate any learning algorithm, in ICLR, 2018. C. Finn and S. Levine. paper
-
Robust meta-learning for mixed linear regression with small batches, in NeurIPS, 2020. W. Kong, R. Somani, S. Kakade, and S. Oh. paper
-
One-shot distributed ridge regression in high dimensions, in ICML, 2020. Y. Sheng, and E. Dobriban. paper
-
FewRel: A large-scale supervised few-shot relation classification dataset with state-of-the-art evaluation, in EMNLP, 2018. X. Han, H. Zhu, P. Yu, Z. Wang, Y. Yao, Z. Liu, and M. Sun. paper code
-
The Omniglot challenge: A 3-year progress report, in Current Opinion in Behavioral Sciences, 2019. B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. paper code
-
FewRel 2.0: Towards more challenging few-shot relation classification, in EMNLP, 2019. T. Gao, X. Han, H. Zhu, Z. Liu, P. Li, M. Sun, and J. Zhou. paper code
-
META-DATASET: A dataset of datasets for learning to learn from few examples, in ICLR, 2020. E. Triantafillou, T. Zhu, V. Dumoulin, P. Lamblin, U. Evci, K. Xu, R. Goroshin, C. Gelada, K. Swersky, P. Manzagol, and H. Larochelle. paper code
-
Meta-World: A benchmark and evaluation for multi-task and meta reinforcement learning, arXiv preprint, 2019. T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. paper code
-
Few-shot object detection with attention-rpn and multi-relation detector, in CVPR, 2020. Q. Fan, W. Zhuo, C.-K. Tang, Y.-W. Tai. paper code
-
FSS-1000: A 1000-class dataset for few-shot segmentation, in CVPR, 2020. X. Li, T. Wei, Y. P. Chen, Y.-W. Tai, and C.-K. Tang. paper code
-
A broader study of cross-domain few-shot learning, in ECCV, 2020. Y. Guo, N. C. Codella, L. Karlinsky, J. V. Codella, J. R. Smith, K. Saenko, T. Rosing, and R. Feris. paper code
-
Impact of base dataset design on few-shot image classification, in ECCV, 2020. O. Sbai, C. Couprie, and M. Aubry. paper code
-
Label-embedding for attribute-based classification, in CVPR, 2013. Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. paper
-
A unified semantic embedding: Relating taxonomies and attributes, in NeurIPS, 2014. S. J. Hwang and L. Sigal. paper
-
Multi-attention network for one shot learning, in CVPR, 2017. P. Wang, L. Liu, C. Shen, Z. Huang, A. van den Hengel, and H. T. Shen. paper
-
Few-shot and zero-shot multi-label learning for structured label spaces, in EMNLP, 2018. A. Rios and R. Kavuluru. paper
-
Learning compositional representations for few-shot recognition, in ICCV, 2019. P. Tokmakov, Y.-X. Wang, and M. Hebert. paper code
-
Large-scale few-shot learning: Knowledge transfer with class hierarchy, in CVPR, 2019. A. Li, T. Luo, Z. Lu, T. Xiang, and L. Wang. paper
-
Generalized zero- and few-shot learning via aligned variational autoencoders, in CVPR, 2019. E. Schonfeld, S. Ebrahimi, S. Sinha, T. Darrell, and Z. Akata. paper code
-
F-VAEGAN-D2: A feature generating framework for any-shot learning, in CVPR, 2019. Y. Xian, S. Sharma, B. Schiele, and Z. Akata. paper
-
TGG: Transferable graph generation for zero-shot and few-shot learning, in ACM MM, 2019. C. Zhang, X. Lyu, and Z. Tang. paper
-
Adaptive cross-modal few-shot learning, in NeurIPS, 2019. C. Xing, N. Rostamzadeh, B. N. Oreshkin, and P. O. Pinheiro. paper
-
Learning meta model for zero- and few-shot face anti-spoofing, in AAAI, 2020. Y. Qin, C. Zhao, X. Zhu, Z. Wang, Z. Yu, T. Fu, F. Zhou, J. Shi, and Z. Lei. paper
-
RD-GAN: Few/Zero-shot chinese character style transfer via radical decomposition and rendering, in ECCV, 2020. Y. Huang, M. He, L. Jin, and Y. Wang. paper
-
An empirical study on large-scale multi-label text classification including few and zero-shot labels, in EMNLP, 2020. I. Chalkidis, M. Fergadiotis, S. Kotitsas, P. Malakasiotis, N. Aletras, and I. Androutsopoulos. paper
-
Multi-label few/zero-shot learning with knowledge aggregated from multiple label graphs, in EMNLP, 2020. J. Lu, L. Du, M. Liu, and J. Dipnall. paper
-
Emergent complexity and zero-shot transfer via unsupervised environment design, in NeurIPS, 2020. M. Dennis, N. Jaques, E. Vinitsky, A. Bayen, S. Russell, A. Critch, and S. Levine. paper
-
Torchmeta, a library for few-shot learning & meta-learning baselines written in PyTorch. link
-
learn2learn, a library for meta-learning baselines written in PyTorch. link
-
keras-fsl, a library for few-shot learning baselines written in Tensorflow. link
-
PaddleFSL, a library for few-shot learning baselines written in PaddlePaddle. link