-
Notifications
You must be signed in to change notification settings - Fork 260
Normal subgroups and quotient groups #2854
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: subgroups
Are you sure you want to change the base?
Changes from all commits
969f670
69be655
e3baf59
60616c1
c87e4bf
40bb8c6
2460cf0
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| @@ -0,0 +1,129 @@ | ||||||||||
| ------------------------------------------------------------------------ | ||||||||||
| -- The Agda standard library | ||||||||||
| -- | ||||||||||
| -- Quotient groups | ||||||||||
| ------------------------------------------------------------------------ | ||||||||||
|
|
||||||||||
| {-# OPTIONS --safe --cubical-compatible #-} | ||||||||||
|
|
||||||||||
| open import Algebra.Bundles using (Group) | ||||||||||
| open import Algebra.NormalSubgroup using (NormalSubgroup) | ||||||||||
|
|
||||||||||
| module Algebra.Construct.Quotient.Group {c ℓ} (G : Group c ℓ) {c′ ℓ′} (N : NormalSubgroup G c′ ℓ′) where | ||||||||||
|
|
||||||||||
| open Group G | ||||||||||
|
|
||||||||||
| import Algebra.Definitions as AlgDefs | ||||||||||
| open import Algebra.Morphism.Structures using (IsGroupHomomorphism) | ||||||||||
| open import Algebra.Properties.Monoid monoid | ||||||||||
| open import Algebra.Properties.Group G using (⁻¹-anti-homo-∙) | ||||||||||
| open import Algebra.Structures using (IsGroup) | ||||||||||
| open import Data.Product.Base using (_,_) | ||||||||||
| open import Function.Definitions using (Surjective) | ||||||||||
| open import Level using (_⊔_) | ||||||||||
| open import Relation.Binary.Core using (_⇒_) | ||||||||||
| open import Relation.Binary.Definitions using (Reflexive; Symmetric; Transitive) | ||||||||||
| open import Relation.Binary.Structures using (IsEquivalence) | ||||||||||
| open import Relation.Binary.Reasoning.Setoid setoid | ||||||||||
|
|
||||||||||
| private | ||||||||||
| module N = NormalSubgroup N | ||||||||||
| open NormalSubgroup N using (ι; module ι; conjugate; normal) | ||||||||||
|
|
||||||||||
| infix 0 _by_ | ||||||||||
|
|
||||||||||
| data _≋_ (x y : Carrier) : Set (c ⊔ ℓ ⊔ c′) where | ||||||||||
| _by_ : ∀ g → ι g ∙ x ≈ y → x ≋ y | ||||||||||
|
Comment on lines
+35
to
+36
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Are you sticking with this version, or the symmetric one which multiplies on each side of the equation?
Suggested change
plus some smart constructors/pattern synonyms to achieve the various properties? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I want to experiment with the symmetric version more, but:
|
||||||||||
|
|
||||||||||
| ≋-refl : Reflexive _≋_ | ||||||||||
| ≋-refl {x} = N.ε by trans (∙-congʳ ι.ε-homo) (identityˡ x) | ||||||||||
|
|
||||||||||
| ≋-sym : Symmetric _≋_ | ||||||||||
| ≋-sym {x} {y} (g by ιg∙x≈y) = g N.⁻¹ by begin | ||||||||||
| ι (g N.⁻¹) ∙ y ≈⟨ ∙-cong (ι.⁻¹-homo g) (sym ιg∙x≈y) ⟩ | ||||||||||
| ι g ⁻¹ ∙ (ι g ∙ x) ≈⟨ cancelˡ (inverseˡ (ι g)) x ⟩ | ||||||||||
| x ∎ | ||||||||||
|
|
||||||||||
| ≋-trans : Transitive _≋_ | ||||||||||
| ≋-trans {x} {y} {z} (g by ιg∙x≈y) (h by ιh∙y≈z) = h N.∙ g by begin | ||||||||||
| ι (h N.∙ g) ∙ x ≈⟨ ∙-congʳ (ι.∙-homo h g) ⟩ | ||||||||||
| (ι h ∙ ι g) ∙ x ≈⟨ uv≈w⇒xu∙v≈xw ιg∙x≈y (ι h) ⟩ | ||||||||||
| ι h ∙ y ≈⟨ ιh∙y≈z ⟩ | ||||||||||
| z ∎ | ||||||||||
|
|
||||||||||
| ≋-isEquivalence : IsEquivalence _≋_ | ||||||||||
| ≋-isEquivalence = record | ||||||||||
| { refl = ≋-refl | ||||||||||
| ; sym = ≋-sym | ||||||||||
| ; trans = ≋-trans | ||||||||||
| } | ||||||||||
|
|
||||||||||
| ≈⇒≋ : _≈_ ⇒ _≋_ | ||||||||||
| ≈⇒≋ {x} {y} x≈y = N.ε by trans (∙-cong ι.ε-homo x≈y) (identityˡ y) | ||||||||||
|
|
||||||||||
| open AlgDefs _≋_ | ||||||||||
|
|
||||||||||
| ≋-∙-cong : Congruent₂ _∙_ | ||||||||||
| ≋-∙-cong {x} {y} {u} {v} (g by ιg∙x≈y) (h by ιh∙u≈v) = g N.∙ h′ by begin | ||||||||||
| ι (g N.∙ h′) ∙ (x ∙ u) ≈⟨ ∙-congʳ (ι.∙-homo g h′) ⟩ | ||||||||||
| (ι g ∙ ι h′) ∙ (x ∙ u) ≈⟨ uv≈wx⇒yu∙vz≈yw∙xz (normal h x) (ι g) u ⟩ | ||||||||||
| (ι g ∙ x) ∙ (ι h ∙ u) ≈⟨ ∙-cong ιg∙x≈y ιh∙u≈v ⟩ | ||||||||||
| y ∙ v ∎ | ||||||||||
| where h′ = conjugate h x | ||||||||||
|
|
||||||||||
| ≋-⁻¹-cong : Congruent₁ _⁻¹ | ||||||||||
| ≋-⁻¹-cong {x} {y} (g by ιg∙x≈y) = h by begin | ||||||||||
| ι h ∙ x ⁻¹ ≈⟨ normal (g N.⁻¹) (x ⁻¹) ⟩ | ||||||||||
| x ⁻¹ ∙ ι (g N.⁻¹) ≈⟨ ∙-congˡ (ι.⁻¹-homo g) ⟩ | ||||||||||
| x ⁻¹ ∙ ι g ⁻¹ ≈⟨ ⁻¹-anti-homo-∙ (ι g) x ⟨ | ||||||||||
| (ι g ∙ x) ⁻¹ ≈⟨ ⁻¹-cong ιg∙x≈y ⟩ | ||||||||||
| y ⁻¹ ∎ | ||||||||||
| where h = conjugate (g N.⁻¹) (x ⁻¹) | ||||||||||
|
|
||||||||||
| quotientIsGroup : IsGroup _≋_ _∙_ ε _⁻¹ | ||||||||||
| quotientIsGroup = record | ||||||||||
| { isMonoid = record | ||||||||||
| { isSemigroup = record | ||||||||||
| { isMagma = record | ||||||||||
| { isEquivalence = ≋-isEquivalence | ||||||||||
| ; ∙-cong = ≋-∙-cong | ||||||||||
| } | ||||||||||
| ; assoc = λ x y z → ≈⇒≋ (assoc x y z) | ||||||||||
| } | ||||||||||
| ; identity = record | ||||||||||
| { fst = λ x → ≈⇒≋ (identityˡ x) | ||||||||||
| ; snd = λ x → ≈⇒≋ (identityʳ x) | ||||||||||
| } | ||||||||||
| } | ||||||||||
| ; inverse = record | ||||||||||
| { fst = λ x → ≈⇒≋ (inverseˡ x) | ||||||||||
| ; snd = λ x → ≈⇒≋ (inverseʳ x) | ||||||||||
| } | ||||||||||
| ; ⁻¹-cong = ≋-⁻¹-cong | ||||||||||
| } | ||||||||||
|
|
||||||||||
| quotientGroup : Group c (c ⊔ ℓ ⊔ c′) | ||||||||||
| quotientGroup = record { isGroup = quotientIsGroup } | ||||||||||
jamesmckinna marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||||||
|
|
||||||||||
| _/_ : Group c (c ⊔ ℓ ⊔ c′) | ||||||||||
| _/_ = quotientGroup | ||||||||||
|
|
||||||||||
| project : Group.Carrier G → Group.Carrier quotientGroup | ||||||||||
|
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. My personal preference is for There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I've got no strong feeling here |
||||||||||
| project x = x -- because we do all the work in the relation | ||||||||||
|
|
||||||||||
| project-isHomomorphism : IsGroupHomomorphism rawGroup (Group.rawGroup quotientGroup) project | ||||||||||
| project-isHomomorphism = record | ||||||||||
| { isMonoidHomomorphism = record | ||||||||||
| { isMagmaHomomorphism = record | ||||||||||
| { isRelHomomorphism = record | ||||||||||
| { cong = ≈⇒≋ | ||||||||||
| } | ||||||||||
| ; homo = λ _ _ → ≋-refl | ||||||||||
| } | ||||||||||
| ; ε-homo = ≋-refl | ||||||||||
| } | ||||||||||
| ; ⁻¹-homo = λ _ → ≋-refl | ||||||||||
| } | ||||||||||
|
|
||||||||||
| project-surjective : Surjective _≈_ _≋_ project | ||||||||||
| project-surjective g = g , ≈⇒≋ | ||||||||||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,37 @@ | ||
| ------------------------------------------------------------------------ | ||
| -- The Agda standard library | ||
| -- | ||
| -- Definition of normal subgroups | ||
| ------------------------------------------------------------------------ | ||
|
|
||
| {-# OPTIONS --safe --cubical-compatible #-} | ||
|
|
||
| open import Algebra.Bundles using (Group) | ||
|
|
||
| module Algebra.NormalSubgroup {c ℓ} (G : Group c ℓ) where | ||
|
|
||
| open import Algebra.Definitions | ||
| open import Algebra.Construct.Sub.Group G using (Subgroup) | ||
| open import Level using (suc; _⊔_) | ||
|
|
||
| private | ||
| module G = Group G | ||
|
|
||
| -- every element of the subgroup commutes in G | ||
| record IsNormal {c′ ℓ′} (subgroup : Subgroup c′ ℓ′) : Set (c ⊔ ℓ ⊔ c′) where | ||
| open Subgroup subgroup | ||
| field | ||
| conjugate : ∀ n g → Carrier | ||
| normal : ∀ n g → ι (conjugate n g) G.∙ g G.≈ g G.∙ ι n | ||
|
|
||
| record NormalSubgroup c′ ℓ′ : Set (c ⊔ ℓ ⊔ suc (c′ ⊔ ℓ′)) where | ||
jamesmckinna marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| field | ||
| subgroup : Subgroup c′ ℓ′ | ||
| isNormal : IsNormal subgroup | ||
|
|
||
| open Subgroup subgroup public | ||
| open IsNormal isNormal public | ||
|
|
||
| abelian⇒subgroup-normal : ∀ {c′ ℓ′} → Commutative G._≈_ G._∙_ → (subgroup : Subgroup c′ ℓ′) → IsNormal subgroup | ||
| abelian⇒subgroup-normal ∙-comm subgroup = record { normal = λ n g → ∙-comm (ι n) g } | ||
| where open Subgroup subgroup | ||
|
Comment on lines
+35
to
+37
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I'd maybe be tempted to lift this out to |
||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Can simplify this to: