Skip to content

ambient-code/agentready

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

76 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AgentReady Repository Scorer

codecov Tests

Assess git repositories against 25 evidence-based attributes for AI-assisted development readiness.

📚 Research-Based Assessment: AgentReady's 25 attributes are derived from comprehensive research analyzing 50+ authoritative sources including Anthropic, Microsoft, Google, ArXiv, and IEEE/ACM. Each attribute is backed by peer-reviewed research and industry best practices. View full research report →

Overview

AgentReady evaluates your repository across multiple dimensions of code quality, documentation, testing, and infrastructure to determine how well-suited it is for AI-assisted development workflows. The tool generates comprehensive reports with:

  • Overall Score & Certification: Platinum/Gold/Silver/Bronze based on 25 attributes
  • Interactive HTML Reports: Filter, sort, and explore findings with embedded guidance
  • Version-Control-Friendly Markdown: Track progress over time with git-diffable reports
  • Actionable Remediation: Specific tools, commands, and examples to improve each attribute
  • Schema Versioning: Backwards-compatible report format with validation and migration tools

Quick Start

Bootstrap (Recommended)

Transform your repository with one command:

cd /path/to/your/repo
agentready bootstrap .
git add . && git commit -m "build: Bootstrap agent-ready infrastructure"
git push

What you get:

  • ✅ GitHub Actions workflows (tests, security, AgentReady assessment)
  • ✅ Pre-commit hooks (formatters, linters)
  • ✅ Issue/PR templates
  • ✅ Dependabot configuration
  • ✅ Automated assessment on every PR

Duration: <60 seconds

See detailed Bootstrap tutorial →

Installation

# Clone the repository
git clone https://github.com/yourusername/agentready.git
cd agentready

# Create virtual environment
python3 -m venv .venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate

# Install dependencies
pip install -e ".[dev]"

Assessment Only

For one-time analysis without infrastructure changes:

# Assess current repository
agentready .

# Assess another repository
agentready /path/to/your/repo

# Specify custom configuration
agentready /path/to/repo --config my-config.yaml

# Custom output directory
agentready /path/to/repo --output-dir ./reports

Example Output

Assessing repository: myproject
Repository: /Users/username/myproject
Languages detected: Python (42 files), JavaScript (18 files)

Evaluating 25 attributes...
[████████████████████████░░░░░░░░] 23/25 (2 skipped)

Overall Score: 72.5/100 (Silver)
Attributes Assessed: 23/25
Duration: 2m 7s

Reports generated:
  HTML: .agentready/report-latest.html
  Markdown: .agentready/report-latest.md

Features

25 Evidence-Based Attributes

Evaluated across 13 categories:

  1. Context Window Optimization: CLAUDE.md files, concise docs, file size limits
  2. Documentation Standards: README structure, inline docs, ADRs
  3. Code Quality: Cyclomatic complexity, file length, type annotations, code smells
  4. Repository Structure: Standard layouts, separation of concerns
  5. Testing & CI/CD: Coverage, test naming, pre-commit hooks
  6. Dependency Management: Lock files, freshness, security
  7. Git & Version Control: Conventional commits, gitignore, templates
  8. Build & Development: One-command setup, dev docs, containers
  9. Error Handling: Clear messages, structured logging
  10. API Documentation: OpenAPI/Swagger specs
  11. Modularity: DRY principle, naming conventions
  12. CI/CD Integration: Pipeline visibility, branch protection
  13. Security: Scanning automation, secrets management

Tier-Based Scoring

Attributes are weighted by importance:

  • Tier 1 (Essential): 50% of total score - CLAUDE.md, README, types, layouts, lock files
  • Tier 2 (Critical): 30% of total score - Tests, commits, build setup
  • Tier 3 (Important): 15% of total score - Complexity, logging, API docs
  • Tier 4 (Advanced): 5% of total score - Security scanning, performance benchmarks

Missing essential attributes (especially CLAUDE.md at 10% weight) has 10x the impact of missing advanced features.

Interactive HTML Reports

  • Filter by status (Pass/Fail/Skipped)
  • Sort by score, tier, or category
  • Search attributes by name
  • Collapsible sections with detailed evidence
  • Color-coded score indicators
  • Certification ladder visualization
  • Works offline (no CDN dependencies)

Customization

Create .agentready-config.yaml to customize weights:

weights:
  claude_md_file: 0.15      # Increase importance (default: 0.10)
  test_coverage: 0.05       # Increase importance (default: 0.03)
  conventional_commits: 0.01  # Decrease importance (default: 0.03)
  # Other 22 attributes use defaults, rescaled to sum to 1.0

excluded_attributes:
  - performance_benchmarks  # Skip this attribute

output_dir: ./custom-reports

CLI Reference

# Assessment commands
agentready PATH                          # Assess repository at PATH
agentready PATH --verbose                # Show detailed progress
agentready PATH --config FILE            # Use custom configuration
agentready PATH --output-dir DIR         # Custom report location

# Configuration commands
agentready --validate-config FILE        # Validate configuration
agentready --generate-config             # Create example config

# Research report management
agentready research-version              # Show bundled research version
agentready research validate FILE        # Validate research report
agentready research init                 # Generate new research report
agentready research add-attribute FILE   # Add attribute to report
agentready research bump-version FILE    # Update version
agentready research format FILE          # Format research report

# Utility commands
agentready --version                     # Show tool version
agentready --help                        # Show help message

Architecture

AgentReady follows a library-first design:

  • Models: Data entities (Repository, Assessment, Finding, Attribute)
  • Assessors: Independent evaluators for each attribute category
  • Services: Scanner (orchestration), Scorer (calculation), LanguageDetector
  • Reporters: HTML and Markdown report generators
  • CLI: Thin wrapper orchestrating assessment workflow

Development

Run Tests

# Run all tests with coverage
pytest

# Run specific test suite
pytest tests/unit/
pytest tests/integration/
pytest tests/contract/

# Run with verbose output
pytest -v -s

Code Quality

# Format code
black src/ tests/

# Sort imports
isort src/ tests/

# Lint code
flake8 src/ tests/ --ignore=E501

# Run all checks
black . && isort . && flake8 .

Project Structure

src/agentready/
├── cli/              # Click-based CLI entry point
├── assessors/        # Attribute evaluators (13 categories)
├── models/           # Data entities
├── services/         # Core logic (Scanner, Scorer)
├── reporters/        # HTML and Markdown generators
├── templates/        # Jinja2 HTML template
└── data/             # Bundled research report and defaults

tests/
├── unit/             # Unit tests for individual components
├── integration/      # End-to-end workflow tests
├── contract/         # Schema validation tests
└── fixtures/         # Test repositories

Research Foundation

All 25 attributes are derived from evidence-based research with 50+ citations from:

  • Anthropic (Claude Code documentation, engineering blog)
  • Microsoft (Code metrics, Azure DevOps best practices)
  • Google (SRE handbook, style guides)
  • ArXiv (Software engineering research papers)
  • IEEE/ACM (Academic publications on code quality)

See src/agentready/data/agent-ready-codebase-attributes.md for complete research report.

License

MIT License - see LICENSE file for details.

Contributing

Contributions welcome! Please ensure:

  • All tests pass (pytest)
  • Code is formatted (black, isort)
  • Linting passes (flake8)
  • Test coverage >80%

Support

  • Documentation: See /docs directory
  • Issues: Report at GitHub Issues
  • Questions: Open a discussion on GitHub

Quick Start: pip install -e ".[dev]" && agentready . - Ready in <5 minutes!