-
Notifications
You must be signed in to change notification settings - Fork 272
Description
What is the problem the feature request solves?
Note: This issue was generated with AI assistance. The specification details have been extracted from Spark documentation and may need verification.
Comet does not currently support the Spark timestamp_add_interval function, causing queries using this function to fall back to Spark's JVM execution instead of running natively on DataFusion.
The TimestampAddInterval expression adds a time interval to a timestamp value. It supports both day-time intervals (containing days, hours, minutes, seconds) and calendar intervals (containing months, days, and microseconds), with proper timezone handling for accurate temporal arithmetic.
Supporting this expression would allow more Spark workloads to benefit from Comet's native acceleration.
Describe the potential solution
Spark Specification
Syntax:
timestamp_column + INTERVAL '1' DAY
timestamp_column + INTERVAL '1-2' YEAR TO MONTH// DataFrame API usage
df.select(col("timestamp_col") + expr("INTERVAL '1' DAY"))Arguments:
| Argument | Type | Description |
|---|---|---|
| start | Expression | The base timestamp value (TimestampType or TimestampNTZType) |
| interval | Expression | The interval to add (CalendarIntervalType or DayTimeIntervalType) |
| timeZoneId | Option[String] | Optional timezone identifier for timezone-aware operations |
Return Type: Returns the same data type as the input start expression (either TimestampType or TimestampNTZType).
Supported Data Types:
- Input timestamp:
AnyTimestampType(bothTimestampTypeandTimestampNTZType) - Input interval:
CalendarIntervalTypeorDayTimeIntervalType
Edge Cases:
- Null handling: Returns null if either the timestamp or interval input is null (
nullIntolerant = true) - Timezone transitions: Properly handles daylight saving time transitions and timezone offset changes
- Calendar arithmetic: Month additions handle variable month lengths (e.g., adding 1 month to Jan 31 may result in Feb 28/29)
- Overflow behavior: May produce invalid results for extremely large interval values that exceed timestamp boundaries
Examples:
-- Add 1 day to a timestamp
SELECT timestamp_col + INTERVAL '1' DAY FROM events;
-- Add 2 months and 15 days
SELECT timestamp_col + INTERVAL '2-0' YEAR TO MONTH + INTERVAL '15' DAY FROM events;
-- Add precise time intervals
SELECT timestamp_col + INTERVAL '1 2:30:45.123' DAY TO SECOND FROM events;// DataFrame API usage
import org.apache.spark.sql.functions._
// Add interval using SQL expression
df.select(col("timestamp_col") + expr("INTERVAL '1' DAY"))
// Using interval functions
df.select(col("timestamp_col") + expr("make_interval(0, 1, 0, 0, 0, 0)"))Implementation Approach
See the Comet guide on adding new expressions for detailed instructions.
- Scala Serde: Add expression handler in
spark/src/main/scala/org/apache/comet/serde/ - Register: Add to appropriate map in
QueryPlanSerde.scala - Protobuf: Add message type in
native/proto/src/proto/expr.protoif needed - Rust: Implement in
native/spark-expr/src/(check if DataFusion has built-in support first)
Additional context
Difficulty: Medium
Spark Expression Class: org.apache.spark.sql.catalyst.expressions.TimestampAddInterval
Related:
TimestampDiff- Calculate difference between timestampsDateAdd- Add days to date valuesAddMonths- Add months to date/timestamp valuesIntervalExpression- Create interval literals
This issue was auto-generated from Spark reference documentation.