Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,123 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.flink.ml.classification.linearsvc;

import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.ml.api.Estimator;
import org.apache.flink.ml.common.datastream.DataStreamUtils;
import org.apache.flink.ml.common.feature.LabeledPointWithWeight;
import org.apache.flink.ml.common.lossfunc.HingeLoss;
import org.apache.flink.ml.common.optimizer.Optimizer;
import org.apache.flink.ml.common.optimizer.SGD;
import org.apache.flink.ml.linalg.DenseVector;
import org.apache.flink.ml.param.Param;
import org.apache.flink.ml.util.ParamUtils;
import org.apache.flink.ml.util.ReadWriteUtils;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.api.internal.TableImpl;
import org.apache.flink.util.Preconditions;

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

/**
* An Estimator which implements the linear support vector classification.
*
* <p>See https://en.wikipedia.org/wiki/Support-vector_machine#Linear_SVM.
*/
public class LinearSVC implements Estimator<LinearSVC, LinearSVCModel>, LinearSVCParams<LinearSVC> {

private final Map<Param<?>, Object> paramMap = new HashMap<>();

public LinearSVC() {
ParamUtils.initializeMapWithDefaultValues(paramMap, this);
}

@Override
@SuppressWarnings({"rawTypes", "ConstantConditions"})
public LinearSVCModel fit(Table... inputs) {
Preconditions.checkArgument(inputs.length == 1);
StreamTableEnvironment tEnv =
(StreamTableEnvironment) ((TableImpl) inputs[0]).getTableEnvironment();

DataStream<LabeledPointWithWeight> trainData =
tEnv.toDataStream(inputs[0])
.map(
dataPoint -> {
double weight =
getWeightCol() == null
? 1.0
: (Double) dataPoint.getField(getWeightCol());
double label = (Double) dataPoint.getField(getLabelCol());
Preconditions.checkState(
Double.compare(0.0, label) == 0
|| Double.compare(1.0, label) == 0,
"LinearSVC only supports binary classification. But detected label: %s.",
label);
DenseVector features =
(DenseVector) dataPoint.getField(getFeaturesCol());
return new LabeledPointWithWeight(features, label, weight);
});

DataStream<DenseVector> initModelData =
DataStreamUtils.reduce(
trainData.map(x -> x.getFeatures().size()),
(ReduceFunction<Integer>)
(t0, t1) -> {
Preconditions.checkState(
t0.equals(t1),
"The training data should all have same dimensions.");
return t0;
})
.map(DenseVector::new);

Optimizer optimizer =
new SGD(
getMaxIter(),
getLearningRate(),
getGlobalBatchSize(),
getTol(),
getReg(),
getElasticNet());
DataStream<DenseVector> rawModelData =
optimizer.optimize(initModelData, trainData, HingeLoss.INSTANCE);

DataStream<LinearSVCModelData> modelData = rawModelData.map(LinearSVCModelData::new);
LinearSVCModel model = new LinearSVCModel().setModelData(tEnv.fromDataStream(modelData));
ReadWriteUtils.updateExistingParams(model, paramMap);
return model;
}

@Override
public void save(String path) throws IOException {
ReadWriteUtils.saveMetadata(this, path);
}

public static LinearSVC load(StreamTableEnvironment tEnv, String path) throws IOException {
return ReadWriteUtils.loadStageParam(path);
}

@Override
public Map<Param<?>, Object> getParamMap() {
return paramMap;
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.flink.ml.classification.linearsvc;

import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
import org.apache.flink.api.java.typeutils.RowTypeInfo;
import org.apache.flink.ml.api.Model;
import org.apache.flink.ml.common.broadcast.BroadcastUtils;
import org.apache.flink.ml.common.datastream.TableUtils;
import org.apache.flink.ml.linalg.BLAS;
import org.apache.flink.ml.linalg.DenseVector;
import org.apache.flink.ml.linalg.Vectors;
import org.apache.flink.ml.linalg.typeinfo.DenseVectorTypeInfo;
import org.apache.flink.ml.param.Param;
import org.apache.flink.ml.util.ParamUtils;
import org.apache.flink.ml.util.ReadWriteUtils;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.api.internal.TableImpl;
import org.apache.flink.types.Row;
import org.apache.flink.util.Preconditions;

import org.apache.commons.lang3.ArrayUtils;

import java.io.IOException;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;

/** A Model which classifies data using the model data computed by {@link LinearSVC}. */
public class LinearSVCModel implements Model<LinearSVCModel>, LinearSVCModelParams<LinearSVCModel> {

private final Map<Param<?>, Object> paramMap = new HashMap<>();

private Table modelDataTable;

public LinearSVCModel() {
ParamUtils.initializeMapWithDefaultValues(paramMap, this);
}

@Override
@SuppressWarnings("unchecked")
public Table[] transform(Table... inputs) {
Preconditions.checkArgument(inputs.length == 1);
StreamTableEnvironment tEnv =
(StreamTableEnvironment) ((TableImpl) inputs[0]).getTableEnvironment();
DataStream<Row> inputStream = tEnv.toDataStream(inputs[0]);

final String broadcastModelKey = "broadcastModelKey";
DataStream<LinearSVCModelData> modelDataStream =
LinearSVCModelData.getModelDataStream(modelDataTable);

RowTypeInfo inputTypeInfo = TableUtils.getRowTypeInfo(inputs[0].getResolvedSchema());
RowTypeInfo outputTypeInfo =
new RowTypeInfo(
ArrayUtils.addAll(
inputTypeInfo.getFieldTypes(),
BasicTypeInfo.DOUBLE_TYPE_INFO,
DenseVectorTypeInfo.INSTANCE),
ArrayUtils.addAll(
inputTypeInfo.getFieldNames(),
getPredictionCol(),
getRawPredictionCol()));

DataStream<Row> predictionResult =
BroadcastUtils.withBroadcastStream(
Collections.singletonList(inputStream),
Collections.singletonMap(broadcastModelKey, modelDataStream),
inputList -> {
DataStream inputData = inputList.get(0);
return inputData.map(
new PredictLabelFunction(
broadcastModelKey, getFeaturesCol(), getThreshold()),
outputTypeInfo);
});
return new Table[] {tEnv.fromDataStream(predictionResult)};
}

@Override
public LinearSVCModel setModelData(Table... inputs) {
modelDataTable = inputs[0];
return this;
}

@Override
public Table[] getModelData() {
return new Table[] {modelDataTable};
}

@Override
public void save(String path) throws IOException {
ReadWriteUtils.saveMetadata(this, path);
ReadWriteUtils.saveModelData(
LinearSVCModelData.getModelDataStream(modelDataTable),
path,
new LinearSVCModelData.ModelDataEncoder());
}

public static LinearSVCModel load(StreamTableEnvironment tEnv, String path) throws IOException {
LinearSVCModel model = ReadWriteUtils.loadStageParam(path);
Table modelDataTable =
ReadWriteUtils.loadModelData(tEnv, path, new LinearSVCModelData.ModelDataDecoder());
return model.setModelData(modelDataTable);
}

@Override
public Map<Param<?>, Object> getParamMap() {
return paramMap;
}

/** A utility function used for prediction. */
private static class PredictLabelFunction extends RichMapFunction<Row, Row> {

private final String broadcastModelKey;

private final String featuresCol;

private final double threshold;

private DenseVector coefficient;

public PredictLabelFunction(
String broadcastModelKey, String featuresCol, double threshold) {
this.broadcastModelKey = broadcastModelKey;
this.featuresCol = featuresCol;
this.threshold = threshold;
}

@Override
public Row map(Row dataPoint) {
if (coefficient == null) {
LinearSVCModelData modelData =
(LinearSVCModelData)
getRuntimeContext().getBroadcastVariable(broadcastModelKey).get(0);
coefficient = modelData.coefficient;
}
DenseVector features = (DenseVector) dataPoint.getField(featuresCol);
Row predictionResult = predictOneDataPoint(features, coefficient, threshold);
return Row.join(dataPoint, predictionResult);
}
}

/**
* The main logic that predicts one input data point.
*
* @param feature The input feature.
* @param coefficient The model parameters.
* @param threshold The threshold for prediction.
* @return The prediction label and the raw predictions.
*/
private static Row predictOneDataPoint(
DenseVector feature, DenseVector coefficient, double threshold) {
double dotValue = BLAS.dot(feature, coefficient);
return Row.of(dotValue >= threshold ? 1.0 : 0.0, Vectors.dense(dotValue, -dotValue));
}
}
Loading