-
Notifications
You must be signed in to change notification settings - Fork 90
[FLINK-27091] Add Transformer and Estimator for LinearSVC #93
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
123 changes: 123 additions & 0 deletions
123
flink-ml-lib/src/main/java/org/apache/flink/ml/classification/linearsvc/LinearSVC.java
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,123 @@ | ||
| /* | ||
| * Licensed to the Apache Software Foundation (ASF) under one | ||
| * or more contributor license agreements. See the NOTICE file | ||
| * distributed with this work for additional information | ||
| * regarding copyright ownership. The ASF licenses this file | ||
| * to you under the Apache License, Version 2.0 (the | ||
| * "License"); you may not use this file except in compliance | ||
| * with the License. You may obtain a copy of the License at | ||
| * | ||
| * http://www.apache.org/licenses/LICENSE-2.0 | ||
| * | ||
| * Unless required by applicable law or agreed to in writing, software | ||
| * distributed under the License is distributed on an "AS IS" BASIS, | ||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| * See the License for the specific language governing permissions and | ||
| * limitations under the License. | ||
| */ | ||
|
|
||
| package org.apache.flink.ml.classification.linearsvc; | ||
|
|
||
| import org.apache.flink.api.common.functions.ReduceFunction; | ||
| import org.apache.flink.ml.api.Estimator; | ||
| import org.apache.flink.ml.common.datastream.DataStreamUtils; | ||
| import org.apache.flink.ml.common.feature.LabeledPointWithWeight; | ||
| import org.apache.flink.ml.common.lossfunc.HingeLoss; | ||
| import org.apache.flink.ml.common.optimizer.Optimizer; | ||
| import org.apache.flink.ml.common.optimizer.SGD; | ||
| import org.apache.flink.ml.linalg.DenseVector; | ||
| import org.apache.flink.ml.param.Param; | ||
| import org.apache.flink.ml.util.ParamUtils; | ||
| import org.apache.flink.ml.util.ReadWriteUtils; | ||
| import org.apache.flink.streaming.api.datastream.DataStream; | ||
| import org.apache.flink.table.api.Table; | ||
| import org.apache.flink.table.api.bridge.java.StreamTableEnvironment; | ||
| import org.apache.flink.table.api.internal.TableImpl; | ||
| import org.apache.flink.util.Preconditions; | ||
|
|
||
| import java.io.IOException; | ||
| import java.util.HashMap; | ||
| import java.util.Map; | ||
|
|
||
| /** | ||
| * An Estimator which implements the linear support vector classification. | ||
| * | ||
| * <p>See https://en.wikipedia.org/wiki/Support-vector_machine#Linear_SVM. | ||
| */ | ||
| public class LinearSVC implements Estimator<LinearSVC, LinearSVCModel>, LinearSVCParams<LinearSVC> { | ||
|
|
||
| private final Map<Param<?>, Object> paramMap = new HashMap<>(); | ||
|
|
||
| public LinearSVC() { | ||
| ParamUtils.initializeMapWithDefaultValues(paramMap, this); | ||
| } | ||
|
|
||
| @Override | ||
| @SuppressWarnings({"rawTypes", "ConstantConditions"}) | ||
| public LinearSVCModel fit(Table... inputs) { | ||
| Preconditions.checkArgument(inputs.length == 1); | ||
| StreamTableEnvironment tEnv = | ||
| (StreamTableEnvironment) ((TableImpl) inputs[0]).getTableEnvironment(); | ||
|
|
||
| DataStream<LabeledPointWithWeight> trainData = | ||
| tEnv.toDataStream(inputs[0]) | ||
| .map( | ||
| dataPoint -> { | ||
| double weight = | ||
| getWeightCol() == null | ||
| ? 1.0 | ||
| : (Double) dataPoint.getField(getWeightCol()); | ||
| double label = (Double) dataPoint.getField(getLabelCol()); | ||
| Preconditions.checkState( | ||
| Double.compare(0.0, label) == 0 | ||
| || Double.compare(1.0, label) == 0, | ||
| "LinearSVC only supports binary classification. But detected label: %s.", | ||
| label); | ||
| DenseVector features = | ||
| (DenseVector) dataPoint.getField(getFeaturesCol()); | ||
| return new LabeledPointWithWeight(features, label, weight); | ||
| }); | ||
|
|
||
| DataStream<DenseVector> initModelData = | ||
| DataStreamUtils.reduce( | ||
| trainData.map(x -> x.getFeatures().size()), | ||
| (ReduceFunction<Integer>) | ||
| (t0, t1) -> { | ||
| Preconditions.checkState( | ||
| t0.equals(t1), | ||
| "The training data should all have same dimensions."); | ||
| return t0; | ||
| }) | ||
| .map(DenseVector::new); | ||
|
|
||
| Optimizer optimizer = | ||
| new SGD( | ||
| getMaxIter(), | ||
| getLearningRate(), | ||
| getGlobalBatchSize(), | ||
| getTol(), | ||
| getReg(), | ||
| getElasticNet()); | ||
| DataStream<DenseVector> rawModelData = | ||
| optimizer.optimize(initModelData, trainData, HingeLoss.INSTANCE); | ||
|
|
||
| DataStream<LinearSVCModelData> modelData = rawModelData.map(LinearSVCModelData::new); | ||
| LinearSVCModel model = new LinearSVCModel().setModelData(tEnv.fromDataStream(modelData)); | ||
| ReadWriteUtils.updateExistingParams(model, paramMap); | ||
| return model; | ||
| } | ||
|
|
||
| @Override | ||
| public void save(String path) throws IOException { | ||
| ReadWriteUtils.saveMetadata(this, path); | ||
| } | ||
|
|
||
| public static LinearSVC load(StreamTableEnvironment tEnv, String path) throws IOException { | ||
| return ReadWriteUtils.loadStageParam(path); | ||
| } | ||
|
|
||
| @Override | ||
| public Map<Param<?>, Object> getParamMap() { | ||
| return paramMap; | ||
| } | ||
| } | ||
174 changes: 174 additions & 0 deletions
174
flink-ml-lib/src/main/java/org/apache/flink/ml/classification/linearsvc/LinearSVCModel.java
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,174 @@ | ||
| /* | ||
| * Licensed to the Apache Software Foundation (ASF) under one | ||
| * or more contributor license agreements. See the NOTICE file | ||
| * distributed with this work for additional information | ||
| * regarding copyright ownership. The ASF licenses this file | ||
| * to you under the Apache License, Version 2.0 (the | ||
| * "License"); you may not use this file except in compliance | ||
| * with the License. You may obtain a copy of the License at | ||
| * | ||
| * http://www.apache.org/licenses/LICENSE-2.0 | ||
| * | ||
| * Unless required by applicable law or agreed to in writing, software | ||
| * distributed under the License is distributed on an "AS IS" BASIS, | ||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| * See the License for the specific language governing permissions and | ||
| * limitations under the License. | ||
| */ | ||
|
|
||
| package org.apache.flink.ml.classification.linearsvc; | ||
|
|
||
| import org.apache.flink.api.common.functions.RichMapFunction; | ||
| import org.apache.flink.api.common.typeinfo.BasicTypeInfo; | ||
| import org.apache.flink.api.java.typeutils.RowTypeInfo; | ||
| import org.apache.flink.ml.api.Model; | ||
| import org.apache.flink.ml.common.broadcast.BroadcastUtils; | ||
| import org.apache.flink.ml.common.datastream.TableUtils; | ||
| import org.apache.flink.ml.linalg.BLAS; | ||
| import org.apache.flink.ml.linalg.DenseVector; | ||
| import org.apache.flink.ml.linalg.Vectors; | ||
| import org.apache.flink.ml.linalg.typeinfo.DenseVectorTypeInfo; | ||
| import org.apache.flink.ml.param.Param; | ||
| import org.apache.flink.ml.util.ParamUtils; | ||
| import org.apache.flink.ml.util.ReadWriteUtils; | ||
| import org.apache.flink.streaming.api.datastream.DataStream; | ||
| import org.apache.flink.table.api.Table; | ||
| import org.apache.flink.table.api.bridge.java.StreamTableEnvironment; | ||
| import org.apache.flink.table.api.internal.TableImpl; | ||
| import org.apache.flink.types.Row; | ||
| import org.apache.flink.util.Preconditions; | ||
|
|
||
| import org.apache.commons.lang3.ArrayUtils; | ||
|
|
||
| import java.io.IOException; | ||
| import java.util.Collections; | ||
| import java.util.HashMap; | ||
| import java.util.Map; | ||
|
|
||
| /** A Model which classifies data using the model data computed by {@link LinearSVC}. */ | ||
| public class LinearSVCModel implements Model<LinearSVCModel>, LinearSVCModelParams<LinearSVCModel> { | ||
|
|
||
| private final Map<Param<?>, Object> paramMap = new HashMap<>(); | ||
|
|
||
| private Table modelDataTable; | ||
|
|
||
| public LinearSVCModel() { | ||
| ParamUtils.initializeMapWithDefaultValues(paramMap, this); | ||
| } | ||
|
|
||
| @Override | ||
| @SuppressWarnings("unchecked") | ||
| public Table[] transform(Table... inputs) { | ||
| Preconditions.checkArgument(inputs.length == 1); | ||
| StreamTableEnvironment tEnv = | ||
| (StreamTableEnvironment) ((TableImpl) inputs[0]).getTableEnvironment(); | ||
| DataStream<Row> inputStream = tEnv.toDataStream(inputs[0]); | ||
|
|
||
| final String broadcastModelKey = "broadcastModelKey"; | ||
| DataStream<LinearSVCModelData> modelDataStream = | ||
| LinearSVCModelData.getModelDataStream(modelDataTable); | ||
|
|
||
| RowTypeInfo inputTypeInfo = TableUtils.getRowTypeInfo(inputs[0].getResolvedSchema()); | ||
| RowTypeInfo outputTypeInfo = | ||
| new RowTypeInfo( | ||
| ArrayUtils.addAll( | ||
| inputTypeInfo.getFieldTypes(), | ||
| BasicTypeInfo.DOUBLE_TYPE_INFO, | ||
| DenseVectorTypeInfo.INSTANCE), | ||
| ArrayUtils.addAll( | ||
| inputTypeInfo.getFieldNames(), | ||
| getPredictionCol(), | ||
| getRawPredictionCol())); | ||
|
|
||
| DataStream<Row> predictionResult = | ||
| BroadcastUtils.withBroadcastStream( | ||
| Collections.singletonList(inputStream), | ||
| Collections.singletonMap(broadcastModelKey, modelDataStream), | ||
| inputList -> { | ||
| DataStream inputData = inputList.get(0); | ||
| return inputData.map( | ||
| new PredictLabelFunction( | ||
| broadcastModelKey, getFeaturesCol(), getThreshold()), | ||
| outputTypeInfo); | ||
| }); | ||
| return new Table[] {tEnv.fromDataStream(predictionResult)}; | ||
| } | ||
|
|
||
| @Override | ||
| public LinearSVCModel setModelData(Table... inputs) { | ||
| modelDataTable = inputs[0]; | ||
| return this; | ||
| } | ||
|
|
||
| @Override | ||
| public Table[] getModelData() { | ||
| return new Table[] {modelDataTable}; | ||
| } | ||
|
|
||
| @Override | ||
| public void save(String path) throws IOException { | ||
| ReadWriteUtils.saveMetadata(this, path); | ||
| ReadWriteUtils.saveModelData( | ||
| LinearSVCModelData.getModelDataStream(modelDataTable), | ||
| path, | ||
| new LinearSVCModelData.ModelDataEncoder()); | ||
| } | ||
|
|
||
| public static LinearSVCModel load(StreamTableEnvironment tEnv, String path) throws IOException { | ||
| LinearSVCModel model = ReadWriteUtils.loadStageParam(path); | ||
| Table modelDataTable = | ||
| ReadWriteUtils.loadModelData(tEnv, path, new LinearSVCModelData.ModelDataDecoder()); | ||
| return model.setModelData(modelDataTable); | ||
| } | ||
|
|
||
| @Override | ||
| public Map<Param<?>, Object> getParamMap() { | ||
| return paramMap; | ||
| } | ||
|
|
||
| /** A utility function used for prediction. */ | ||
| private static class PredictLabelFunction extends RichMapFunction<Row, Row> { | ||
|
|
||
| private final String broadcastModelKey; | ||
|
|
||
| private final String featuresCol; | ||
|
|
||
| private final double threshold; | ||
|
|
||
| private DenseVector coefficient; | ||
|
|
||
| public PredictLabelFunction( | ||
| String broadcastModelKey, String featuresCol, double threshold) { | ||
| this.broadcastModelKey = broadcastModelKey; | ||
| this.featuresCol = featuresCol; | ||
| this.threshold = threshold; | ||
| } | ||
|
|
||
| @Override | ||
| public Row map(Row dataPoint) { | ||
| if (coefficient == null) { | ||
| LinearSVCModelData modelData = | ||
| (LinearSVCModelData) | ||
| getRuntimeContext().getBroadcastVariable(broadcastModelKey).get(0); | ||
| coefficient = modelData.coefficient; | ||
| } | ||
| DenseVector features = (DenseVector) dataPoint.getField(featuresCol); | ||
| Row predictionResult = predictOneDataPoint(features, coefficient, threshold); | ||
| return Row.join(dataPoint, predictionResult); | ||
| } | ||
| } | ||
|
|
||
| /** | ||
| * The main logic that predicts one input data point. | ||
| * | ||
| * @param feature The input feature. | ||
| * @param coefficient The model parameters. | ||
| * @param threshold The threshold for prediction. | ||
| * @return The prediction label and the raw predictions. | ||
| */ | ||
| private static Row predictOneDataPoint( | ||
| DenseVector feature, DenseVector coefficient, double threshold) { | ||
| double dotValue = BLAS.dot(feature, coefficient); | ||
| return Row.of(dotValue >= threshold ? 1.0 : 0.0, Vectors.dense(dotValue, -dotValue)); | ||
| } | ||
| } |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.