Skip to content

Conversation

@aa8y
Copy link

@aa8y aa8y commented Nov 24, 2015

Adds methods to get values from a row object optionally. I personally have an implicit class which does this and which I use a lot. I think this feature would be immensely beneficial for everyone. Please let me know if these need changes.

@rxin
Copy link
Contributor

rxin commented Nov 25, 2015

Jenkins, test this please.

@aa8y
Copy link
Author

aa8y commented Nov 25, 2015

Sorry, I am new to this. Does what you wrote trigger a Jenkins build? If yes, that's really cool!

@rxin
Copy link
Contributor

rxin commented Nov 25, 2015

Yes - except there is a bug that somehow Jenkins is ignoring me...!

@SparkQA
Copy link

SparkQA commented Nov 25, 2015

Test build #2114 has finished for PR 9943 at commit 114bc39.

  • This patch fails Spark unit tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

@aa8y
Copy link
Author

aa8y commented Nov 25, 2015

Sorry. I ran the tests and I thought they passed on my machine. A few tests
couldn't be run (like docker) but these looked good. I'll take another look
into it.

Thanks,
Arun

On Wed, Nov 25, 2015 at 1:38 PM, Apache Spark QA notifications@github.com
wrote:

Test build #2114 has finished
https://amplab.cs.berkeley.edu/jenkins/job/NewSparkPullRequestBuilder/2114/consoleFull

for PR 9943 at commit 114bc39
114bc39
.

  • This patch fails Spark unit tests.
  • This patch merges cleanly.
  • This patch adds no public classes.


Reply to this email directly or view it on GitHub
#9943 (comment).

JoshRosen and others added 24 commits November 28, 2015 23:25
This patch attempts to speed up VersionsSuite by storing fetched Hive JARs in an Ivy cache that persists across tests runs. If `SPARK_VERSIONS_SUITE_IVY_PATH` is set, that path will be used for the cache; if it is not set, VersionsSuite will create a temporary Ivy cache which is deleted after the test completes.

Author: Josh Rosen <joshrosen@databricks.com>

Closes #9624 from JoshRosen/SPARK-9866.
…ithSGD Python API equal to Scala one

This is to bring the API documentation of StreamingLogisticReressionWithSGD and StreamingLinearRegressionWithSGC in line with the Scala versions.

-Fixed the algorithm descriptions
-Added default values to parameter descriptions
-Changed StreamingLogisticRegressionWithSGD regParam to default to 0, as in the Scala version

Author: Bryan Cutler <bjcutler@us.ibm.com>

Closes #9141 from BryanCutler/StreamingLogisticRegressionWithSGD-python-api-sync.
Author: Stephen Samuel <sam@sksamuel.com>

Closes #9377 from sksamuel/master.
…latMapGroups.

Based on feedback from Matei, this is more consistent with mapPartitions in Spark.

Also addresses some of the cleanups from a previous commit that renames the type variables.

Author: Reynold Xin <rxin@databricks.com>

Closes #9919 from rxin/SPARK-11933.
Per [pwendell's comments on SPARK-11903](https://issues.apache.org/jira/browse/SPARK-11903?focusedCommentId=15021511&page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-15021511) I'm removing this dead code.

If we are concerned about preserving compatibility, I can instead leave the option in and add a warning.

For example:

```sh
echo "Warning: '--skip-java-test' is deprecated and has no effect."
;;
```

cc pwendell, srowen

Author: Nicholas Chammas <nicholas.chammas@gmail.com>

Closes #9924 from nchammas/make-distribution.
Author: Mikhail Bautin <mbautin@gmail.com>

Closes #9308 from mbautin/SPARK-10707.
Author: Xiu Guo <xguo27@gmail.com>

Closes #9918 from xguo27/SPARK-11897.
When there are speculative tasks in the stage, running progress bar could overflow and goes hidden on a new line:
![image](https://cloud.githubusercontent.com/assets/4317392/11326841/5fd3482e-9142-11e5-8ca5-cb2f0c0c8964.png)
3 completed / 2 running (including 1 speculative) out of 4 total tasks

This is a simple fix by capping the started tasks at `total - completed` tasks
![image](https://cloud.githubusercontent.com/assets/4317392/11326842/6bb67260-9142-11e5-90f0-37f9174878ec.png)

I should note my preferred way to fix it is via css style
```css
.progress { display: flex; }
```
which shifts the correction burden from driver to web browser. However I couldn't get selenium test to measure the position/dimension of the progress bar correctly to get this unit tested.

It also has the side effect that the width will be calibrated so the running occupies 2 / 5 instead of 1 / 4.
![image](https://cloud.githubusercontent.com/assets/4317392/11326848/7b03e9f0-9142-11e5-89ad-bd99cb0647cf.png)

All in all, since this cosmetic bug is minor enough, I suppose the original simple fix should be good enough.

Author: Forest Fang <forest.fang@outlook.com>

Closes #9896 from saurfang/progressbar.
`SessionManager` will set the `operationLog` if the configuration `hive.server2.logging.operation.enabled` is true in version of hive 1.2.1.
But the spark did not adapt to this change, so no matter enabled the configuration or not, spark thrift server will always log the warn message.
PS: if `hive.server2.logging.operation.enabled` is false, it should log the warn message (the same as hive thrift server).

Author: huangzhaowei <carlmartinmax@gmail.com>

Closes #9056 from SaintBacchus/SPARK-11043.
Currently, `spark-sql` would not flush command history when exiting.

Author: Daoyuan Wang <daoyuan.wang@intel.com>

Closes #9563 from adrian-wang/jline.
…parent class loader

Without patch, two additional tests of ExecutorClassLoaderSuite fails.

- "resource from parent"
- "resources from parent"

Detailed explanation is here, https://issues.apache.org/jira/browse/SPARK-11818?focusedCommentId=15011202&page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-15011202

Author: Jungtaek Lim <kabhwan@gmail.com>

Closes #9812 from HeartSaVioR/SPARK-11818.
we should pass in resolved encodera to logical `CoGroup` and bind them in physical `CoGroup`

Author: Wenchen Fan <wenchen@databricks.com>

Closes #9928 from cloud-fan/cogroup.
Remove duplicate ml examples (only for ml).  mengxr

Author: Yanbo Liang <ybliang8@gmail.com>

Closes #9933 from yanboliang/SPARK-11685.
…aries ignore weight col

Doc for 1.6 that the summaries mostly ignore the weight column.
To be corrected for 1.7

CC: mengxr thunterdb

Author: Joseph K. Bradley <joseph@databricks.com>

Closes #9927 from jkbradley/linregsummary-doc.
Add read/write support to LDA, similar to ALS.

save/load for ml.LocalLDAModel is done.
For DistributedLDAModel, I'm not sure if we can invoke save on the mllib.DistributedLDAModel directly. I'll send update after some test.

Author: Yuhao Yang <hhbyyh@gmail.com>

Closes #9894 from hhbyyh/ldaMLsave.
Author: Wenchen Fan <wenchen@databricks.com>

Closes #9909 from cloud-fan/get-struct.
… bus's thread

This is continuation of SPARK-11761

Andrew suggested adding this protection. See tail of #9741

Author: tedyu <yuzhihong@gmail.com>

Closes #9852 from tedyu/master.
Currently pivot's signature looks like

```scala
scala.annotation.varargs
def pivot(pivotColumn: Column, values: Column*): GroupedData

scala.annotation.varargs
def pivot(pivotColumn: String, values: Any*): GroupedData
```

I think we can remove the one that takes "Column" types, since callers should always be passing in literals. It'd also be more clear if the values are not varargs, but rather Seq or java.util.List.

I also made similar changes for Python.

Author: Reynold Xin <rxin@databricks.com>

Closes #9929 from rxin/SPARK-11946.
…ot logger.

In the default Spark distribution, there are currently two separate
log4j config files, with different default values for the root logger,
so that when running the shell you have a different default log level.
This makes the shell more usable, since the logs don't overwhelm the
output.

But if you install a custom log4j.properties, you lose that, because
then it's going to be used no matter whether you're running a regular
app or the shell.

With this change, the overriding of the log level is done differently;
the log level repl's main class (org.apache.spark.repl.Main) is used
to define the root logger's level when running the shell, defaulting
to WARN if it's not set explicitly.

On a somewhat related change, the shell output about the "sc" variable
was changed a bit to contain a little more useful information about
the application, since when the root logger's log level is WARN, that
information is never shown to the user.

Author: Marcelo Vanzin <vanzin@cloudera.com>

Closes #9816 from vanzin/shell-logging.
After calling spill() on SortedIterator, the array inside InMemorySorter is not needed, it should be freed during spilling, this could help to join multiple tables with limited memory.

Author: Davies Liu <davies@databricks.com>

Closes #9793 from davies/free_array.
… metastore

When using remote Hive metastore, `hive.metastore.uris` is set to the metastore URI.  However, it overrides `javax.jdo.option.ConnectionURL` unexpectedly, thus the execution Hive client connects to the actual remote Hive metastore instead of the Derby metastore created in the temporary directory.  Cleaning this configuration for the execution Hive client fixes this issue.

Author: Cheng Lian <lian@databricks.com>

Closes #9895 from liancheng/spark-11783.clean-remote-metastore-config.
This PR is to provide two common `coalesce` and `repartition` in Dataset APIs.

After reading the comments of SPARK-9999, I am unclear about the plan for supporting re-partitioning in Dataset APIs. Currently, both RDD APIs and Dataframe APIs provide users such a flexibility to control the number of partitions.

In most traditional RDBMS, they expose the number of partitions, the partitioning columns, the table partitioning methods to DBAs for performance tuning and storage planning. Normally, these parameters could largely affect the query performance. Since the actual performance depends on the workload types, I think it is almost impossible to automate the discovery of the best partitioning strategy for all the scenarios.

I am wondering if Dataset APIs are planning to hide these APIs from users? Feel free to reject my PR if it does not match the plan.

Thank you for your answers. marmbrus rxin cloud-fan

Author: gatorsmile <gatorsmile@gmail.com>

Closes #9899 from gatorsmile/coalesce.
…taFrameReader

This patch makes it consistent to use varargs in all DataFrameReader methods, including Parquet, JSON, text, and the generic load function.

Also added a few more API tests for the Java API.

Author: Reynold Xin <rxin@databricks.com>

Closes #9945 from rxin/SPARK-11967.
keypointt and others added 26 commits December 8, 2015 11:46
The json endpoint for stages doesn't include information on the stage duration that is present in the UI. This looks like a simple oversight, they should be included. eg., the metrics should be included at api/v1/applications/<appId>/stages.

Metrics I've added are: submissionTime, firstTaskLaunchedTime and completionTime

Author: Xin Ren <iamshrek@126.com>

Closes #10107 from keypointt/SPARK-11155.
…tputStream.toByteArray)

SPARK-12060 fixed JavaSerializerInstance.serialize
This PR applies the same technique on two other classes.

zsxwing

Author: tedyu <yuzhihong@gmail.com>

Closes #10177 from tedyu/master.
checked with hive, greatest/least should cast their children to a tightest common type,
i.e. `(int, long) => long`, `(int, string) => error`, `(decimal(10,5), decimal(5, 10)) => error`

Author: Wenchen Fan <wenchen@databricks.com>

Closes #10196 from cloud-fan/type-coercion.
This PR is to add three more data types into Encoder, including `BigDecimal`, `Date` and `Timestamp`.

marmbrus cloud-fan rxin Could you take a quick look at these three types? Not sure if it can be merged to 1.6. Thank you very much!

Author: gatorsmile <gatorsmile@gmail.com>

Closes #10188 from gatorsmile/dataTypesinEncoder.
… APIs

This PR contains the following updates:

- Created a new private variable `boundTEncoder` that can be shared by multiple functions, `RDD`, `select` and `collect`.
- Replaced all the `queryExecution.analyzed` by the function call `logicalPlan`
- A few API comments are using wrong class names (e.g., `DataFrame`) or parameter names (e.g., `n`)
- A few API descriptions are wrong. (e.g., `mapPartitions`)

marmbrus rxin cloud-fan Could you take a look and check if they are appropriate? Thank you!

Author: gatorsmile <gatorsmile@gmail.com>

Closes #10184 from gatorsmile/datasetClean.
jira: https://issues.apache.org/jira/browse/SPARK-10393

Since the logic of the text processing part has been moved to ML estimators/transformers, replace the related code in LDA Example with the ML pipeline.

Author: Yuhao Yang <hhbyyh@gmail.com>
Author: yuhaoyang <yuhao@zhanglipings-iMac.local>

Closes #8551 from hhbyyh/ldaExUpdate.
…unction

Delays application of ResolvePivot until all aggregates are resolved to prevent problems with UnresolvedFunction and adds unit test

Author: Andrew Ray <ray.andrew@gmail.com>

Closes #10202 from aray/sql-pivot-unresolved-function.
jira: https://issues.apache.org/jira/browse/SPARK-11605
Check Java compatibility for MLlib for this release.

fix:

1. `StreamingTest.registerStream` needs java friendly interface.

2. `GradientBoostedTreesModel.computeInitialPredictionAndError` and `GradientBoostedTreesModel.updatePredictionError` has java compatibility issue. Mark them as `developerAPI`.

TBD:
[updated] no fix for now per discussion.
`org.apache.spark.mllib.classification.LogisticRegressionModel`
`public scala.Option<java.lang.Object> getThreshold();` has wrong return type for Java invocation.
`SVMModel` has the similar issue.

Yet adding a `scala.Option<java.util.Double> getThreshold()` would result in an overloading error due to the same function signature. And adding a new function with different name seems to be not necessary.

cc jkbradley feynmanliang

Author: Yuhao Yang <hhbyyh@gmail.com>

Closes #10102 from hhbyyh/javaAPI.
Documentation regarding the `IndexToString` label transformer with code snippets in Scala/Java/Python.

Author: BenFradet <benjamin.fradet@gmail.com>

Closes #10166 from BenFradet/SPARK-12159.
The checker tries to follow as closely as possible the guidelines of
the code style document, and makes some decisions where the guide is
not clear. In particular:

- wildcard imports come first when there are other imports in the
  same package
- multi-import blocks come before single imports
- lower-case names inside multi-import blocks come before others

In some projects, such as graphx, there seems to be a convention to
separate o.a.s imports from the project's own; to simplify the
checker, I chose not to allow that, which is a strict interpretation
of the code style guide, even though I think it makes sense.

Since the checks are based on syntax only, some edge cases may
generate spurious warnings; for example, when class names start
with a lower case letter (and are thus treated as a package name
by the checker).

The checker is currently only generating warnings, and since there
are many of those, the build output does get a little noisy. The
idea is to fix the code (and the checker, as needed) little by little
instead of having a huge change that touches everywhere.

Author: Marcelo Vanzin <vanzin@cloudera.com>

Closes #6502 from vanzin/SPARK-3873.
This patch tightens them to `private[memory]`.

Author: Andrew Or <andrew@databricks.com>

Closes #10182 from andrewor14/memory-visibility.
Author: Michael Armbrust <michael@databricks.com>

Closes #10060 from marmbrus/docs.
This PR moves pieces of the spark.ml user guide to reflect suggestions in SPARK-8517. It does not introduce new content, as requested.

<img width="192" alt="screen shot 2015-12-08 at 11 36 00 am" src="https://cloud.githubusercontent.com/assets/7594753/11666166/e82b84f2-9d9f-11e5-8904-e215424d8444.png">

Author: Timothy Hunter <timhunter@databricks.com>

Closes #10207 from thunterdb/spark-8517.
…columns in RegressionEvaluator

felixcheung , mengxr

Just added a message to require()

Author: Dominik Dahlem <dominik.dahlem@gmail.combination>

Closes #9598 from dahlem/ddahlem_regression_evaluator_double_predictions_message_04112015.
…throw Buffer underflow exception

Jira: https://issues.apache.org/jira/browse/SPARK-12222

Deserialize RoaringBitmap using Kryo serializer throw Buffer underflow exception:
```
com.esotericsoftware.kryo.KryoException: Buffer underflow.
	at com.esotericsoftware.kryo.io.Input.require(Input.java:156)
	at com.esotericsoftware.kryo.io.Input.skip(Input.java:131)
	at com.esotericsoftware.kryo.io.Input.skip(Input.java:264)
```

This is caused by a bug of kryo's `Input.skip(long count)`(EsotericSoftware/kryo#119) and we call this method in `KryoInputDataInputBridge`.

Instead of upgrade kryo's version, this pr bypass the  kryo's `Input.skip(long count)` by directly call another `skip` method in kryo's Input.java(https://github.com/EsotericSoftware/kryo/blob/kryo-2.21/src/com/esotericsoftware/kryo/io/Input.java#L124), i.e. write the bug-fixed version of `Input.skip(long count)` in KryoInputDataInputBridge's `skipBytes` method.

more detail link to #9748 (comment)

Author: Fei Wang <wangfei1@huawei.com>

Closes #10213 from scwf/patch-1.
…eally pushed down

Currently Parquet predicate tests all pass even if filters are not pushed down or this is disabled.

In this PR, For checking evaluating filters, Simply it makes the expression from `expression.Filter` and then try to create filters just like Spark does.

For checking the results, this manually accesses to the child rdd (of `expression.Filter`) and produces the results which should be filtered properly, and then compares it to expected values.

Now, if filters are not pushed down or this is disabled, this throws exceptions.

Author: hyukjinkwon <gurwls223@gmail.com>

Closes #9659 from HyukjinKwon/SPARK-11676.
Author: uncleGen <hustyugm@gmail.com>

Closes #10023 from uncleGen/1.6-bugfix.
…visualizing SQL query plan

This PR adds a `private[sql]` method `metadata` to `SparkPlan`, which can be used to describe detail information about a physical plan during visualization. Specifically, this PR uses this method to provide details of `PhysicalRDD`s translated from a data source relation. For example, a `ParquetRelation` converted from Hive metastore table `default.psrc` is now shown as the following screenshot:

![image](https://cloud.githubusercontent.com/assets/230655/11526657/e10cb7e6-9916-11e5-9afa-f108932ec890.png)

And here is the screenshot for a regular `ParquetRelation` (not converted from Hive metastore table) loaded from a really long path:

![output](https://cloud.githubusercontent.com/assets/230655/11680582/37c66460-9e94-11e5-8f50-842db5309d5a.png)

Author: Cheng Lian <lian@databricks.com>

Closes #10004 from liancheng/spark-12012.physical-rdd-metadata.
Currently word2vec has the window hard coded at 5, some users may want different sizes (for example if using on n-gram input or similar). User request comes from http://stackoverflow.com/questions/32231975/spark-word2vec-window-size .

Author: Holden Karau <holden@us.ibm.com>
Author: Holden Karau <holden@pigscanfly.ca>

Closes #8513 from holdenk/SPARK-10299-word2vec-should-allow-users-to-specify-the-window-size.
…tion

Because of AM failure, the target executor number between driver and AM will be different, which will lead to unexpected behavior in dynamic allocation. So when AM is re-registered with driver, state in `ExecutorAllocationManager` and `CoarseGrainedSchedulerBacked` should be reset.

This issue is originally addressed in #8737 , here re-opened again. Thanks a lot KaiXinXiaoLei for finding this issue.

andrewor14 and vanzin would you please help to review this, thanks a lot.

Author: jerryshao <sshao@hortonworks.com>

Closes #9963 from jerryshao/SPARK-10582.
…kenForHBase()

This lines up the HBase token logic with that done for Hive in SPARK-11265: reflection with only CFNE being swallowed.

There is a test, one which doesn't try to put HBase on the yarn/test class and really do the reflection (the way the hive introspection does). If people do want that then it could be added with careful POM work

+also: cut an incorrect comment from the Hive test case before copying it, and a couple of imports that may have been related to the hive test in the past.

Author: Steve Loughran <stevel@hortonworks.com>

Closes #10227 from steveloughran/stevel/patches/SPARK-12241-obtainTokenForHBase.
…execution

This patch fixes a bug in the eviction of storage memory by execution.

## The bug:

In general, execution should be able to evict storage memory when the total storage memory usage is greater than `maxMemory * spark.memory.storageFraction`. Due to a bug, however, Spark might wind up evicting no storage memory in certain cases where the storage memory usage was between `maxMemory * spark.memory.storageFraction` and `maxMemory`. For example, here is a regression test which illustrates the bug:

```scala
    val maxMemory = 1000L
    val taskAttemptId = 0L
    val (mm, ms) = makeThings(maxMemory)
    // Since we used the default storage fraction (0.5), we should be able to allocate 500 bytes
    // of storage memory which are immune to eviction by execution memory pressure.

    // Acquire enough storage memory to exceed the storage region size
    assert(mm.acquireStorageMemory(dummyBlock, 750L, evictedBlocks))
    assertEvictBlocksToFreeSpaceNotCalled(ms)
    assert(mm.executionMemoryUsed === 0L)
    assert(mm.storageMemoryUsed === 750L)

    // At this point, storage is using 250 more bytes of memory than it is guaranteed, so execution
    // should be able to reclaim up to 250 bytes of storage memory.
    // Therefore, execution should now be able to require up to 500 bytes of memory:
    assert(mm.acquireExecutionMemory(500L, taskAttemptId, MemoryMode.ON_HEAP) === 500L) // <--- fails by only returning 250L
    assert(mm.storageMemoryUsed === 500L)
    assert(mm.executionMemoryUsed === 500L)
    assertEvictBlocksToFreeSpaceCalled(ms, 250L)
```

The problem relates to the control flow / interaction between `StorageMemoryPool.shrinkPoolToReclaimSpace()` and `MemoryStore.ensureFreeSpace()`. While trying to allocate the 500 bytes of execution memory, the `UnifiedMemoryManager` discovers that it will need to reclaim 250 bytes of memory from storage, so it calls `StorageMemoryPool.shrinkPoolToReclaimSpace(250L)`. This method, in turn, calls `MemoryStore.ensureFreeSpace(250L)`. However, `ensureFreeSpace()` first checks whether the requested space is less than `maxStorageMemory - storageMemoryUsed`, which will be true if there is any free execution memory because it turns out that `MemoryStore.maxStorageMemory = (maxMemory - onHeapExecutionMemoryPool.memoryUsed)` when the `UnifiedMemoryManager` is used.

The control flow here is somewhat confusing (it grew to be messy / confusing over time / as a result of the merging / refactoring of several components). In the pre-Spark 1.6 code, `ensureFreeSpace` was called directly by the `MemoryStore` itself, whereas in 1.6 it's involved in a confusing control flow where `MemoryStore` calls `MemoryManager.acquireStorageMemory`, which then calls back into `MemoryStore.ensureFreeSpace`, which, in turn, calls `MemoryManager.freeStorageMemory`.

## The solution:

The solution implemented in this patch is to remove the confusing circular control flow between `MemoryManager` and `MemoryStore`, making the storage memory acquisition process much more linear / straightforward. The key changes:

- Remove a layer of inheritance which made the memory manager code harder to understand (5384117).
- Move some bounds checks earlier in the call chain (13ba7ad).
- Refactor `ensureFreeSpace()` so that the part which evicts blocks can be called independently from the part which checks whether there is enough free space to avoid eviction (7c68ca0).
- Realize that this lets us remove a layer of overloads from `ensureFreeSpace` (eec4f6c).
- Realize that `ensureFreeSpace()` can simply be replaced with an `evictBlocksToFreeSpace()` method which is called [after we've already figured out](https://github.com/apache/spark/blob/2dc842aea82c8895125d46a00aa43dfb0d121de9/core/src/main/scala/org/apache/spark/memory/StorageMemoryPool.scala#L88) how much memory needs to be reclaimed via eviction; (2dc842a).

Along the way, I fixed some problems with the mocks in `MemoryManagerSuite`: the old mocks would [unconditionally](https://github.com/apache/spark/blob/80a824d36eec9d9a9f092ee1741453851218ec73/core/src/test/scala/org/apache/spark/memory/MemoryManagerSuite.scala#L84) report that a block had been evicted even if there was enough space in the storage pool such that eviction would be avoided.

I also fixed a problem where `StorageMemoryPool._memoryUsed` might become negative due to freed memory being double-counted when excution evicts storage. The problem was that `StorageMemoryPoolshrinkPoolToFreeSpace` would [decrement `_memoryUsed`](7c68ca0#diff-935c68a9803be144ed7bafdd2f756a0fL133) even though `StorageMemoryPool.freeMemory` had already decremented it as each evicted block was freed. See SPARK-12189 for details.

Author: Josh Rosen <joshrosen@databricks.com>
Author: Andrew Or <andrew@databricks.com>

Closes #10170 from JoshRosen/SPARK-12165.
…ML, throws console error

Don't warn when description isn't valid HTML since it may properly be like "SELECT ... where foo <= 1"

The tests for this code indicate that it's normal to handle strings like this that don't contain HTML as a string rather than markup. Hence logging every such instance as a warning is too noisy since it's not a problem. this is an issue for stages whose name contain SQL like the above

CC tdas as author of this bit of code

Author: Sean Owen <sowen@cloudera.com>

Closes #10159 from srowen/SPARK-11824.
…de_example

PR on behalf of somideshmukh, thanks!

Author: Xusen Yin <yinxusen@gmail.com>
Author: somideshmukh <somilde@us.ibm.com>

Closes #10219 from yinxusen/SPARK-11551.
@JoshRosen
Copy link
Contributor

Looks like this PR is now broken by a bad merge with master. Would you mind closing for now and re-opening once things are fixed? Thanks!

@andrewor14
Copy link
Contributor

@aa8y looks like the diff is screwed up because you accidentally merged in changes from other branches. Would you mind closing this PR or restoring the original diff?

@aa8y
Copy link
Author

aa8y commented Dec 14, 2015

Sure. This is an old PR anyway. I did not know the PRs update themselves with new commits. #10247 is the PR I am working on now. I'll make the recommended changes and push a new commit. Thanks!

@aa8y aa8y closed this Dec 14, 2015
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.