Skip to content

GPU-accelerated Bayesian evidence calculation via radial shooting techniques

License

Notifications You must be signed in to change notification settings

beastraban/sunburst

Repository files navigation

SunBURST

PyPI version Python 3.9+ License: MIT CI

Seeded Universe Navigation — Bayesian Unification via Radial Shooting Techniques

A GPU-accelerated Bayesian evidence calculator achieving machine-precision accuracy through 1024 dimensions with sub-linear scaling.

Features

  • Extreme scalability: O(D^0.67) scaling vs O(exp(D)) for traditional methods
  • GPU acceleration: 1000× speedup over dynesty/PolyChord at matched dimensions
  • High dimensions: Works reliably from 2D to 1024D+
  • Pure Python: No compilation required, NumPy/CuPy compatible
  • Automatic mode detection: Handles multimodal posteriors automatically

Installation

pip install sunburst-bayes

For GPU acceleration (optional but recommended):

pip install cupy-cuda11x  # For CUDA 11.x
# or
pip install cupy-cuda12x  # For CUDA 12.x

Quick Start

from sunburst import compute_evidence, get_array_module

# Define your log-likelihood (GPU-native, handles batched inputs)
def log_likelihood(x):
    xp = get_array_module(x)  # CuPy if GPU, NumPy if CPU
    return -0.5 * xp.sum(x**2, axis=1)  # Gaussian

# Define parameter bounds
dim = 64
bounds = [(-10, 10)] * dim

# Compute evidence
result = compute_evidence(log_likelihood, bounds)

print(f"log Z = {result.log_evidence:.4f} ± {result.log_evidence_std:.4f}")
print(f"Peaks found: {result.n_peaks}")
print(f"Time: {result.wall_time:.2f}s")

Interactive GUI

An interactive Streamlit demo is available:

git clone https://github.com/beastraban/sunburst.git
cd sunburst/sunburst_super_gui
pip install streamlit
streamlit run app.py

Performance Benchmarks

Tested on RTX 3080 Laptop GPU with n_oscillations=1:

Dimension SunBURST dynesty UltraNest Speedup
2D 0.39s 0.61s 0.87s 1.6-2.2×
8D 0.42s 37s 54s 88-129×
64D 0.71s TIMEOUT TIMEOUT >1200×
256D 2.72s
1024D 14.0s

TIMEOUT = >600s (10 minutes)

SunBURST Scaling

SunBURST completes in seconds where traditional methods timeout.

Built-in Test

Verify your installation:

import sunburst
result = sunburst.test(dim=64)  # Runs Gaussian benchmark

Or from command line:

sunburst --test gaussian --dim 64

Configuration Options

result = compute_evidence(
    log_likelihood,
    bounds,
    n_oscillations=1,     # 1=fast, 3=conservative mode detection
    fast=True,            # Fast Hessian estimation
    return_peaks=True,    # Include peak locations in result
    verbose=False,        # Suppress progress output
    seed=42,              # Reproducibility
)

Result Object

result.log_evidence        # float: Estimated log Z
result.log_evidence_std    # float: Uncertainty estimate
result.n_peaks             # int: Number of modes found
result.peaks               # ndarray: (n_peaks, dim) peak locations
result.hessians            # list: Hessian matrices at peaks
result.log_evidence_per_peak  # ndarray: Evidence contribution per peak
result.wall_time           # float: Total computation time
result.module_times        # dict: Per-stage timing breakdown
result.n_likelihood_calls  # int: Total likelihood evaluations
result.config              # dict: Configuration used

GPU Utilities

from sunburst import gpu_available, gpu_info, get_array_module

if gpu_available():
    print(gpu_info())
    xp = get_array_module()  # Returns cupy if available, else numpy

Architecture

SunBURST uses a 4-stage pipeline, named after Guang Ping Yang Style Tai Chi forms:

  1. CarryTiger (抱虎歸山): Mode detection via ray casting
  2. GreenDragon (青龍出水): Peak refinement with L-BFGS
  3. BendTheBow (彎弓射虎): Evidence calculation via Laplace approximation
  4. GraspBirdsTail (攬雀尾): Optional dimensional reduction

Citation

If you use SunBURST in your research, please cite:

@article{wolfson2026sunburst,
    title={SunBURST: Deterministic GPU-Accelerated Bayesian Evidence 
           via Mode-Centric Laplace Integration},
    author={Wolfson, Ira},
    journal={arXiv preprint arXiv:2601.19957},
    year={2026}
}

License

MIT License — see LICENSE for details.

Contributing

Contributions welcome! Please see our contributing guidelines.

Acknowledgments

Module names honor Master Donald Rubbo and the Guang Ping Yang Style Tai Chi (廣平楊式太極拳) tradition.

About

GPU-accelerated Bayesian evidence calculation via radial shooting techniques

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published