Pure Rust OCR Library - Fast, Safe, and Cross-Platform
RustO! is a high-performance OCR (Optical Character Recognition) library written in pure Rust, based on RapidOCR and powered by PaddleOCR models with MNN inference engine.
- π Pure Rust - Zero OpenCV dependency, optional OpenCV backend available
- π― High Accuracy - 99.3% parity with OpenCV-based implementations
- β‘ Fast Performance - Optimized with LTO, single codegen unit compilation
- π Memory Safe - Leverages Rust's safety guarantees
- π Cross-Platform - Linux, macOS, Windows, iOS, Android support
- π§ FFI Ready - C FFI bindings for integration with other languages
- π¦ Easy to Use - Simple API, modern CLI with JSON/Text/TSV output
RustO! is built on top of proven OCR technology:
- Based on: RapidOCR architecture
- Models: PaddleOCR PPOCRv4/v5 models
- Inference: MNN inference engine for high-performance cross-platform execution
- Image Processing: Pure Rust implementation (image + imageproc crates)
- Contour Detection: Custom Rust implementation matching OpenCV behavior
rusto-rs/
βββ src/
β βββ lib.rs # Public API
β βββ main.rs # CLI application
β βββ ffi.rs # C FFI bindings (optional)
β βββ det.rs # Text detection
β βββ rec.rs # Text recognition
β βββ layout.rs # Layout detection
β βββ doc_pipeline.rs # Document pipeline (layout + OCR)
β βββ preprocess.rs # Image preprocessing
β βββ postprocess.rs # Result postprocessing
β βββ contours.rs # Pure Rust contour detection
β βββ geometry.rs # Geometric transformations + NMS
β βββ image_impl.rs # Image abstraction layer
β βββ ...
βββ Cargo.toml # Dependencies & optimization
βββ docs/ # Documentation
βββ examples/ # Example applications
β βββ doc_pipeline_demo.rs # Document pipeline example
β βββ ...
βββ packages/ # Additional packages
RustO! uses MNN inference engine. You need to convert PaddleOCR models to MNN format:
# Install required tools
pip install paddle2onnx
# Download and build MNN from https://github.com/alibaba/MNN
# Convert models using the provided script
python convert_paddle_to_mnn.py --ocr-dir ./modelsSee MODEL_CONVERSION.md for detailed conversion instructions.
# Pure Rust build (default)
cargo build --release
# With FFI bindings
cargo build --release --features ffi
# With OpenCV backend (optional)
cargo build --release --features use-opencv# JSON output (default)
cargo run --release -- \
--det-model path/to/det.mnn \
--rec-model path/to/rec.mnn \
--dict path/to/dict.txt \
image.jpg
# Plain text output
cargo run --release -- \
--det-model path/to/det.mnn \
--rec-model path/to/rec.mnn \
--dict path/to/dict.txt \
--format text \
image.jpg
# TSV output
cargo run --release -- \
--det-model path/to/det.mnn \
--rec-model path/to/rec.mnn \
--dict path/to/dict.txt \
--format tsv \
image.jpgAdd to your Cargo.toml:
[dependencies]
rusto = "0.1"Then in your code:
use rusto::{RapidOCR, RapidOCRConfig};
fn main() -> Result<(), Box<dyn std::error::Error>> {
// Configure OCR
let config = RapidOCRConfig {
det_model_path: "models/det.mnn".to_string(),
rec_model_path: "models/rec.mnn".to_string(),
dict_path: "models/dict.txt".to_string(),
};
// Create OCR instance
let ocr = RapidOCR::new(config)?;
// Run OCR on an image
let results = ocr.ocr("image.jpg")?;
// Process results
for result in results {
println!("Text: {}, Score: {:.3}", result.text, result.score);
println!("Box: {:?}", result.box_points);
}
Ok(())
}RustO! now supports document layout analysis combined with OCR for structured document processing:
use rusto::{DocPipeline, DocPipelineConfig, LayoutConfig, RustOConfig};
fn main() -> Result<(), Box<dyn std::error::Error>> {
// Configure layout detection
let layout_config = LayoutConfig::default("models/DocOCR/layout.mnn".into());
// Configure OCR
let ocr_config = RustOConfig::new_ppv5(
"models/det.mnn".into(),
"models/rec.mnn".into(),
"models/dict.txt".into(),
);
// Create document pipeline
let config = DocPipelineConfig {
layout: layout_config,
ocr: ocr_config,
};
let mut pipeline = DocPipeline::new(config)?;
let result = pipeline.run("document.jpg")?;
// Generate markdown output
println!("{}", result.to_markdown());
Ok(())
}Supported Layout Elements:
- Text, Title, Header, Footer
- Figure, Figure Caption
- Table, Table Caption
- Reference, Equation
Example:
cargo run --example doc_pipeline_demo -- \
--image document.jpg \
--layout-model models/DocOCR/layout.mnn \
--det-model models/det.mnn \
--rec-model models/rec.mnn \
--keys-path models/dict.txtInstall via CocoaPods:
pod 'RustO', '~> 0.1'Then in Swift:
import RustO
let ocr = try RapidOCR(
detModelPath: Bundle.main.path(forResource: "det", ofType: "mnn")!,
recModelPath: Bundle.main.path(forResource: "rec", ofType: "mnn")!,
dictPath: Bundle.main.path(forResource: "dict", ofType: "txt")!
)
let results = try ocr.recognizeFile("image.jpg")
for result in results {
print("\(result.text): \(result.score)")
}Configuration structure for initializing the OCR engine.
pub struct RapidOCRConfig {
pub det_model_path: String, // Path to detection MNN model
pub rec_model_path: String, // Path to recognition MNN model
pub dict_path: String, // Path to character dictionary
}OCR result for a single detected text region.
pub struct TextResult {
pub text: String, // Recognized text
pub score: f32, // Confidence score (0.0-1.0)
pub box_points: [(f32, f32); 4], // Bounding box corners
}Main OCR engine.
impl RapidOCR {
// Create a new OCR instance
pub fn new(config: RapidOCRConfig) -> Result<Self, EngineError>;
// Run OCR on an image file
pub fn ocr<P: AsRef<Path>>(&self, image_path: P) -> Result<Vec<TextResult>, EngineError>;
// Run OCR on image data in memory
pub fn ocr_from_bytes(&self, image_data: &[u8]) -> Result<Vec<TextResult>, EngineError>;
}The library includes C FFI bindings for integration with other languages. Enable with the ffi feature:
cargo build --release --features ffiThis produces:
- Linux:
librusto.so - macOS:
librusto.dylib - Windows:
rusto.dll
See src/ffi.rs for the complete FFI API documentation.
RustO! uses PaddleOCR models converted to ONNX format:
- PPOCRv4 - PaddleOCR version 4 models
- PPOCRv5 - PaddleOCR version 5 models (recommended)
- Detection Model (
det.onnx) - Detects text regions in images - Recognition Model (
rec.onnx) - Recognizes text within detected regions - Dictionary (
dict.txt) - Character dictionary for text recognition
# Example: Download PPOCRv5 models
wget https://github.com/RapidAI/RapidOCR/releases/download/v1.3.0/det.onnx
wget https://github.com/RapidAI/RapidOCR/releases/download/v1.3.0/rec.onnx
wget https://github.com/RapidAI/RapidOCR/releases/download/v1.3.0/dict.txtTested on typical document images:
| Metric | Value |
|---|---|
| Detection | ~80ms |
| Recognition (per box) | ~120ms |
| Total (28 boxes) | ~3.5s |
| Memory Peak | ~200MB |
| Aspect | RustO! | OpenCV-based |
|---|---|---|
| Speed | β Similar (Β±10%) | Baseline |
| Accuracy | β 99.3% parity | 100% |
| Binary Size | β Smaller | Larger (OpenCV deps) |
| Memory Usage | β Lower | Higher (OpenCV overhead) |
| Dependencies | β Minimal | OpenCV required |
| Safety | β Memory safe | Manual memory management |
[features]
default = [] # Pure Rust mode
use-opencv = ["opencv"] # Use OpenCV backend
ffi = [] # Enable C FFI bindings[profile.release]
opt-level = 3 # Maximum optimization
lto = "fat" # Link-time optimization
codegen-units = 1 # Single codegen unit for better optimization
strip = true # Strip symbols
panic = "abort" # Smaller binarycd rapidocr
cargo test
cargo test --features use-opencv # Test OpenCV backendcargo benchcargo clippy
cargo fmt --checkβ οΈ Unused functions (400+ lines) - cleanup pendingβ οΈ Minor lint warnings - non-blocking
- 2 minor text differences out of 28 boxes
- Caused by: Spacing (
"Gol. Darah:"vs"Gol. Darah :") - Impact: Negligible for production use
MIT (or your license)
- Fork the repository
- Create a feature branch
- Make your changes
- Run tests:
cargo test - Submit a pull request
- π§ Email: support@rapidocr.com
- π¬ Discussions: GitHub Discussions
- π Issues: GitHub Issues
RustO! builds upon the excellent work of:
- RapidOCR - Architecture and design inspiration
- PaddleOCR - State-of-the-art OCR models (PPOCRv4/v5)
- ONNX Runtime - Cross-platform inference engine
- Rust Community - Excellent tooling and libraries (image, imageproc, nalgebra)
If you use RustO! in your research or project, please cite:
@software{rusto2024,
title = {RustO! - Pure Rust OCR Library},
author = {byrizki},
year = {2024},
url = {https://github.com/byrizki/rusto-rs},
note = {Based on RapidOCR and powered by PaddleOCR models}
}Also consider citing the underlying technologies:
- PaddleOCR: https://github.com/PaddlePaddle/PaddleOCR
- RapidOCR: https://github.com/RapidAI/RapidOCR
Status: Production Ready π
Version: 0.1.2
License: MIT
Made with β€οΈ and π¦ Rust