You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{{ message }}
This repository was archived by the owner on Jul 21, 2025. It is now read-only.
Is post_ln=1 supported for inference with protobuf file? According to the code below, it seems post_ln=1 is not correctly supported. The input is still pre-normalized.
template <typename T>
__global__ void ker_norm_layer_resual(T* input, T* output, const T* scale,
const T* bias, const T* residual_bias,
const int hidden_size, bool is_post_ln) {
uint block_start = blockIdx.x * hidden_size;
uint start = block_start + threadIdx.x;
uint end = block_start + hidden_size;
float val = 0.0;
for (uint i = start; i < end; i += blockDim.x) {
val += input[i];
}
// step 0. compute mean
__shared__ float s_mean;
float reduce_res = blockReduceSum<float>(val);
if (threadIdx.x == 0) s_mean = reduce_res / float(hidden_size);
__syncthreads();
// step 1. compute variance
val = 0.0;
for (uint i = start; i < end; i += blockDim.x) {
float tmp = input[i] - s_mean;
val += tmp * tmp;
}
__shared__ float s_var;
reduce_res = blockReduceSum(val);
if (threadIdx.x == 0)
s_var = rsqrtf(reduce_res / float(hidden_size) + epsilon);
__syncthreads();
// step 2. layer norm
for (uint i = start; i < end; i += blockDim.x) {
val = input[i] - s_mean;
output[i] = val * s_var * __ldg(&scale[i - block_start]) + // Though post_ln=1, the input is pre-normalzed and is assigned to out?
__ldg(&bias[i - block_start]);
if (is_post_ln) {
input[i] = output[i] + __ldg(&residual_bias[i - block_start]);
} else {
input[i] += __ldg(&residual_bias[i - block_start]);
}
}
}