Skip to content

highfestiva/finplot

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Finance Plot

Finance Plotter, or finplot, is a performant library with a clean api to help you with your backtesting. It's optionated with good defaults, so you can start doing your work without having to setup plots, colors, scales, autoscaling, keybindings, handle panning+vertical zooming (which all non-finance libraries have problems with). And best of all: it can show hundreds of thousands of datapoints without batting an eye.

Features

  • Great performance compared to mpl_finance, plotly and Bokeh
  • Clean api
  • Works with both stocks as well as cryptocurrencies on any time resolution
  • Show as many charts as you want on the same time axis, zoom on all of them at once
  • Auto-reload position where you were looking last run
  • Overlays, fill between, value bands, symbols, labels, legend, volume profile, heatmaps, etc.
  • Can show real-time updates, including orderbook. Save screenshot.
  • Comes with a dozen great examples.

feature1

feature2

feature3

feature3

What it is not

finplot is not a web app. It does not help you create an homebrew exchange. It does not work with Jupyter Labs.

It is only intended for you to do backtesting in. That is not to say that you can't create a ticker or a trade widget yourself. The library is based on the eminent pyqtgraph, which is fast and flexible, so feel free to hack away if that's what you want.

Easy installation

$ pip install finplot

Example

It's straight-forward to start using. This shows every daily candle of Apple since the 80'ies:

import finplot as fplt
import yfinance

df = yfinance.download('AAPL')
fplt.candlestick_ochl(df[['Open', 'Close', 'High', 'Low']])
fplt.show()

For more examples and a bunch of snippets, see the examples directory or the wiki. There you'll find how to plot MACD, Parabolic SAR, RSI, volume profile and much more.

Coffee

For future support and features, consider a small donation.

BTC: bc1qk8m8yh86l2pz4eypflchr0tkn5aeud6cmt426m

ETH: 0x684d7d4C52ed428AE9a36B2407ba909D896cDB67

About

Performant and effortless finance plotting for Python

Resources

License

Stars

Watchers

Forks

Sponsor this project

 

Packages

No packages published