-
Notifications
You must be signed in to change notification settings - Fork 6.6k
Description
Describe the bug
Hi, I would like to utilize flux pipeline. But for now, I have gpu issues to use origin flux pipeline.
If I would like to use nf4 version, How can I set up the inference file on controlnet, inpainting, ip-adapter?
Do I use Fluxcontrol depth or canny and mask, ip-adapter model? or fluxcontrol, fluxfill, ip-adapter?
Thanks,
Reproduction
import torch
from diffusers import FluxControlInpaintPipeline
from diffusers.models.transformers import FluxTransformer2DModel
from transformers import T5EncoderModel
from diffusers.utils import load_image, make_image_grid
from image_gen_aux import DepthPreprocessor # https://github.com/huggingface/image_gen_aux
from PIL import Image
import numpy as np
access_token = ""
pipe = FluxControlInpaintPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Depth-dev",
torch_dtype=torch.bfloat16, token=access_token)
use following lines if you have GPU constraints
---------------------------------------------------------------
transformer = FluxTransformer2DModel.from_pretrained(
"sayakpaul/FLUX.1-Depth-dev-nf4", subfolder="transformer", torch_dtype=torch.bfloat16
)
text_encoder_2 = T5EncoderModel.from_pretrained(
"sayakpaul/FLUX.1-Depth-dev-nf4", subfolder="text_encoder_2", torch_dtype=torch.bfloat16
)
pipe.transformer = transformer
pipe.text_encoder_2 = text_encoder_2
pipe.enable_model_cpu_offload()
---------------------------------------------------------------
pipe.to("cuda")
prompt = "a blue robot sad expressions"
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")
head_mask = np.zeros_like(image)
head_mask[65:580,300:642] = 255
mask_image = Image.fromarray(head_mask)
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
control_image = processor(image)[0].convert("RGB")
output = pipe(
prompt=prompt,
image=image,
control_image=control_image,
mask_image=mask_image,
num_inference_steps=30,
strength=1,
guidance_scale=10.0,
generator=torch.Generator().manual_seed(42),
).images[0]
make_image_grid([image, control_image, mask_image, output.resize(image.size)], rows=1, cols=4).save("output.png")
changing depth to canny, and add ip-adapter?
Logs
System Info
.
Who can help?
No response