-
Notifications
You must be signed in to change notification settings - Fork 6.6k
[SANA LoRA] sana lora training tests and misc. #10296
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
7 commits
Select commit
Hold shift + click to select a range
9918e70
sana lora training tests and misc.
sayakpaul 8eb9487
Merge branch 'main' into test-sana-lora-training
sayakpaul 1c6c5ee
remove push to hub
sayakpaul 6a8ce6d
Merge branch 'main' into test-sana-lora-training
sayakpaul 47774f5
Merge branch 'main' into test-sana-lora-training
sayakpaul 31b1a8e
Update examples/dreambooth/train_dreambooth_lora_sana.py
sayakpaul e8b2352
Merge branch 'main' into test-sana-lora-training
sayakpaul File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,206 @@ | ||
| # coding=utf-8 | ||
| # Copyright 2024 HuggingFace Inc. | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
|
|
||
| import logging | ||
| import os | ||
| import sys | ||
| import tempfile | ||
|
|
||
| import safetensors | ||
|
|
||
|
|
||
| sys.path.append("..") | ||
| from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 | ||
|
|
||
|
|
||
| logging.basicConfig(level=logging.DEBUG) | ||
|
|
||
| logger = logging.getLogger() | ||
| stream_handler = logging.StreamHandler(sys.stdout) | ||
| logger.addHandler(stream_handler) | ||
|
|
||
|
|
||
| class DreamBoothLoRASANA(ExamplesTestsAccelerate): | ||
| instance_data_dir = "docs/source/en/imgs" | ||
| pretrained_model_name_or_path = "hf-internal-testing/tiny-sana-pipe" | ||
| script_path = "examples/dreambooth/train_dreambooth_lora_sana.py" | ||
| transformer_layer_type = "transformer_blocks.0.attn1.to_k" | ||
|
|
||
| def test_dreambooth_lora_sana(self): | ||
| with tempfile.TemporaryDirectory() as tmpdir: | ||
| test_args = f""" | ||
| {self.script_path} | ||
| --pretrained_model_name_or_path {self.pretrained_model_name_or_path} | ||
| --instance_data_dir {self.instance_data_dir} | ||
| --resolution 32 | ||
| --train_batch_size 1 | ||
| --gradient_accumulation_steps 1 | ||
| --max_train_steps 2 | ||
| --learning_rate 5.0e-04 | ||
| --scale_lr | ||
| --lr_scheduler constant | ||
| --lr_warmup_steps 0 | ||
| --output_dir {tmpdir} | ||
| --max_sequence_length 16 | ||
| """.split() | ||
|
|
||
| test_args.extend(["--instance_prompt", ""]) | ||
| run_command(self._launch_args + test_args) | ||
| # save_pretrained smoke test | ||
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) | ||
|
|
||
| # make sure the state_dict has the correct naming in the parameters. | ||
| lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) | ||
| is_lora = all("lora" in k for k in lora_state_dict.keys()) | ||
| self.assertTrue(is_lora) | ||
|
|
||
| # when not training the text encoder, all the parameters in the state dict should start | ||
| # with `"transformer"` in their names. | ||
| starts_with_transformer = all(key.startswith("transformer") for key in lora_state_dict.keys()) | ||
| self.assertTrue(starts_with_transformer) | ||
|
|
||
| def test_dreambooth_lora_latent_caching(self): | ||
| with tempfile.TemporaryDirectory() as tmpdir: | ||
| test_args = f""" | ||
| {self.script_path} | ||
| --pretrained_model_name_or_path {self.pretrained_model_name_or_path} | ||
| --instance_data_dir {self.instance_data_dir} | ||
| --resolution 32 | ||
| --train_batch_size 1 | ||
| --gradient_accumulation_steps 1 | ||
| --max_train_steps 2 | ||
| --cache_latents | ||
| --learning_rate 5.0e-04 | ||
| --scale_lr | ||
| --lr_scheduler constant | ||
| --lr_warmup_steps 0 | ||
| --output_dir {tmpdir} | ||
| --max_sequence_length 16 | ||
| """.split() | ||
|
|
||
| test_args.extend(["--instance_prompt", ""]) | ||
| run_command(self._launch_args + test_args) | ||
| # save_pretrained smoke test | ||
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) | ||
|
|
||
| # make sure the state_dict has the correct naming in the parameters. | ||
| lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) | ||
| is_lora = all("lora" in k for k in lora_state_dict.keys()) | ||
| self.assertTrue(is_lora) | ||
|
|
||
| # when not training the text encoder, all the parameters in the state dict should start | ||
| # with `"transformer"` in their names. | ||
| starts_with_transformer = all(key.startswith("transformer") for key in lora_state_dict.keys()) | ||
| self.assertTrue(starts_with_transformer) | ||
|
|
||
| def test_dreambooth_lora_layers(self): | ||
| with tempfile.TemporaryDirectory() as tmpdir: | ||
| test_args = f""" | ||
| {self.script_path} | ||
| --pretrained_model_name_or_path {self.pretrained_model_name_or_path} | ||
| --instance_data_dir {self.instance_data_dir} | ||
| --resolution 32 | ||
| --train_batch_size 1 | ||
| --gradient_accumulation_steps 1 | ||
| --max_train_steps 2 | ||
| --cache_latents | ||
| --learning_rate 5.0e-04 | ||
| --scale_lr | ||
| --lora_layers {self.transformer_layer_type} | ||
| --lr_scheduler constant | ||
| --lr_warmup_steps 0 | ||
| --output_dir {tmpdir} | ||
| --max_sequence_length 16 | ||
| """.split() | ||
|
|
||
| test_args.extend(["--instance_prompt", ""]) | ||
| run_command(self._launch_args + test_args) | ||
| # save_pretrained smoke test | ||
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) | ||
|
|
||
| # make sure the state_dict has the correct naming in the parameters. | ||
| lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) | ||
| is_lora = all("lora" in k for k in lora_state_dict.keys()) | ||
| self.assertTrue(is_lora) | ||
|
|
||
| # when not training the text encoder, all the parameters in the state dict should start | ||
| # with `"transformer"` in their names. In this test, we only params of | ||
| # `self.transformer_layer_type` should be in the state dict. | ||
| starts_with_transformer = all(self.transformer_layer_type in key for key in lora_state_dict) | ||
| self.assertTrue(starts_with_transformer) | ||
|
|
||
| def test_dreambooth_lora_sana_checkpointing_checkpoints_total_limit(self): | ||
| with tempfile.TemporaryDirectory() as tmpdir: | ||
| test_args = f""" | ||
| {self.script_path} | ||
| --pretrained_model_name_or_path={self.pretrained_model_name_or_path} | ||
| --instance_data_dir={self.instance_data_dir} | ||
| --output_dir={tmpdir} | ||
| --resolution=32 | ||
| --train_batch_size=1 | ||
| --gradient_accumulation_steps=1 | ||
| --max_train_steps=6 | ||
| --checkpoints_total_limit=2 | ||
| --checkpointing_steps=2 | ||
| --max_sequence_length 16 | ||
| """.split() | ||
|
|
||
| test_args.extend(["--instance_prompt", ""]) | ||
| run_command(self._launch_args + test_args) | ||
|
|
||
| self.assertEqual( | ||
| {x for x in os.listdir(tmpdir) if "checkpoint" in x}, | ||
| {"checkpoint-4", "checkpoint-6"}, | ||
| ) | ||
|
|
||
| def test_dreambooth_lora_sana_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): | ||
| with tempfile.TemporaryDirectory() as tmpdir: | ||
| test_args = f""" | ||
| {self.script_path} | ||
| --pretrained_model_name_or_path={self.pretrained_model_name_or_path} | ||
| --instance_data_dir={self.instance_data_dir} | ||
| --output_dir={tmpdir} | ||
| --resolution=32 | ||
| --train_batch_size=1 | ||
| --gradient_accumulation_steps=1 | ||
| --max_train_steps=4 | ||
| --checkpointing_steps=2 | ||
| --max_sequence_length 166 | ||
| """.split() | ||
|
|
||
| test_args.extend(["--instance_prompt", ""]) | ||
| run_command(self._launch_args + test_args) | ||
|
|
||
| self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4"}) | ||
|
|
||
| resume_run_args = f""" | ||
| {self.script_path} | ||
| --pretrained_model_name_or_path={self.pretrained_model_name_or_path} | ||
| --instance_data_dir={self.instance_data_dir} | ||
| --output_dir={tmpdir} | ||
| --resolution=32 | ||
| --train_batch_size=1 | ||
| --gradient_accumulation_steps=1 | ||
| --max_train_steps=8 | ||
| --checkpointing_steps=2 | ||
| --resume_from_checkpoint=checkpoint-4 | ||
| --checkpoints_total_limit=2 | ||
| --max_sequence_length 16 | ||
| """.split() | ||
|
|
||
| resume_run_args.extend(["--instance_prompt", ""]) | ||
| run_command(self._launch_args + resume_run_args) | ||
|
|
||
| self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"}) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.