Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 24 additions & 0 deletions examples/dreambooth/train_dreambooth.py
Original file line number Diff line number Diff line change
Expand Up @@ -159,6 +159,12 @@ def parse_args(input_args=None):
" training using `--resume_from_checkpoint`."
),
)
parser.add_argument(
"--generating_progress_steps",
type=int,
default=500,
help=("Save an image generated from the model every X steps."),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
Expand Down Expand Up @@ -416,6 +422,11 @@ def main(args):

if args.seed is not None:
set_seed(args.seed)
g = torch.Generator(device=accelerator.device.type)
g.manual_seed(args.seed)
else:
g = torch.Generator(device=accelerator.device.type)
g.manual_seed(42)

if args.with_prior_preservation:
class_images_dir = Path(args.class_data_dir)
Expand Down Expand Up @@ -739,6 +750,19 @@ def main(args):
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")

if global_step % args.generating_progress_steps == 0:
if accelerator.is_main_process:
# generate and save the image
pipeline = DiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=accelerator.unwrap_model(unet),
text_encoder=accelerator.unwrap_model(text_encoder),
torch_dtype=weight_dtype,
).to(accelerator.device.type)

image = pipeline(args.instance_prompt, generator=g).images[0]
image.save(f"{args.output_dir}/logs/image_{global_step}.png")

logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
Expand Down