Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
88 changes: 45 additions & 43 deletions examples/custom_diffusion/train_custom_diffusion.py
Original file line number Diff line number Diff line change
Expand Up @@ -207,7 +207,7 @@ def __init__(
with open(concept["class_prompt"], "r") as f:
class_prompt = f.read().splitlines()

class_img_path = [(x, y) for (x, y) in zip(class_images_path, class_prompt)]
class_img_path = list(zip(class_images_path, class_prompt))
self.class_images_path.extend(class_img_path[:num_class_images])

random.shuffle(self.instance_images_path)
Expand Down Expand Up @@ -1214,50 +1214,52 @@ def main(args):
if global_step >= args.max_train_steps:
break

if accelerator.is_main_process:
images = []
if accelerator.is_main_process:
images = []

if args.validation_prompt is not None and global_step % args.validation_steps == 0:
logger.info(
f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
f" {args.validation_prompt}."
)
# create pipeline
pipeline = DiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=accelerator.unwrap_model(unet),
text_encoder=accelerator.unwrap_model(text_encoder),
tokenizer=tokenizer,
revision=args.revision,
torch_dtype=weight_dtype,
)
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
pipeline = pipeline.to(accelerator.device)
pipeline.set_progress_bar_config(disable=True)

# run inference
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
images = [
pipeline(args.validation_prompt, num_inference_steps=25, generator=generator, eta=1.0).images[0]
for _ in range(args.num_validation_images)
]

for tracker in accelerator.trackers:
if tracker.name == "tensorboard":
np_images = np.stack([np.asarray(img) for img in images])
tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
if tracker.name == "wandb":
tracker.log(
{
"validation": [
wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
for i, image in enumerate(images)
]
}
)
if args.validation_prompt is not None and global_step % args.validation_steps == 0:
logger.info(
f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
f" {args.validation_prompt}."
)
# create pipeline
pipeline = DiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=accelerator.unwrap_model(unet),
text_encoder=accelerator.unwrap_model(text_encoder),
tokenizer=tokenizer,
revision=args.revision,
torch_dtype=weight_dtype,
)
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
pipeline = pipeline.to(accelerator.device)
pipeline.set_progress_bar_config(disable=True)

del pipeline
torch.cuda.empty_cache()
# run inference
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
images = [
pipeline(args.validation_prompt, num_inference_steps=25, generator=generator, eta=1.0).images[
0
]
for _ in range(args.num_validation_images)
]

for tracker in accelerator.trackers:
if tracker.name == "tensorboard":
np_images = np.stack([np.asarray(img) for img in images])
tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
if tracker.name == "wandb":
tracker.log(
{
"validation": [
wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
for i, image in enumerate(images)
]
}
)

del pipeline
torch.cuda.empty_cache()

# Save the custom diffusion layers
accelerator.wait_for_everyone()
Expand Down