Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 9 additions & 0 deletions docs/source/en/api/pipelines/controlnet_sdxl.md
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,15 @@ Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to le
- all
- __call__

## StableDiffusionXLControlNetImg2ImgPipeline
[[autodoc]] StableDiffusionXLControlNetImg2ImgPipeline
- all
- __call__

## StableDiffusionXLControlNetInpaintPipeline
[[autodoc]] StableDiffusionXLControlNetInpaintPipeline
- all
- __call__
## StableDiffusionPipelineOutput

[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput
Original file line number Diff line number Diff line change
Expand Up @@ -65,18 +65,16 @@
>>> mask_image = mask_image.resize((512, 512))


>>> def make_inpaint_condition(image, image_mask):
... image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
... image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0

... assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
... image[image_mask > 0.5] = -1.0 # set as masked pixel
... image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
... image = torch.from_numpy(image)
>>> def make_canny_condition(image):
... image = np.array(image)
... image = cv2.Canny(image, 100, 200)
... image = image[:, :, None]
... image = np.concatenate([image, image, image], axis=2)
... image = Image.fromarray(image)
... return image


>>> control_image = make_inpaint_condition(init_image, mask_image)
>>> control_image = make_canny_condition(init_image)

>>> controlnet = ControlNetModel.from_pretrained(
... "lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -72,27 +72,24 @@
>>> mask_image = mask_image.resize((1024, 1024))


>>> def make_inpaint_condition(image, image_mask):
... image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
... image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0

... assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
... image[image_mask < 0.5] = 0 # set as masked pixel
... image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
... image = torch.from_numpy(image)
>>> def make_canny_condition(image):
... image = np.array(image)
... image = cv2.Canny(image, 100, 200)
... image = image[:, :, None]
... image = np.concatenate([image, image, image], axis=2)
... image = Image.fromarray(image)
... return image


>>> control_image = make_inpaint_condition(init_image, mask_image)
>>> control_image = make_canny_condition(init_image)

>>> controlnet = ControlNetModel.from_pretrained(
... "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float32
... "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
... )
>>> pipe = StableDiffusionXLControlNetInpaintPipeline.from_pretrained(
... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float32
... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16
... )

>>> pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
>>> pipe.enable_model_cpu_offload()

>>> # generate image
Expand Down Expand Up @@ -746,13 +743,14 @@ def prepare_latents(
"However, either the image or the noise timestep has not been provided."
)

if image.shape[1] == 4:
image_latents = image.to(device=device, dtype=dtype)
elif return_image_latents or (latents is None and not is_strength_max):
if return_image_latents or (latents is None and not is_strength_max):
image = image.to(device=device, dtype=dtype)
image_latents = self._encode_vae_image(image=image, generator=generator)

image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
if image.shape[1] == 4:
image_latents = image
else:
image_latents = self._encode_vae_image(image=image, generator=generator)
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)

if latents is None and add_noise:
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
Expand Down