Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 14 additions & 4 deletions examples/instruct_pix2pix/train_instruct_pix2pix_sdxl.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,7 @@
from diffusers.training_utils import EMAModel
from diffusers.utils import check_min_version, deprecate, is_wandb_available, load_image
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.torch_utils import is_compiled_module


# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
Expand Down Expand Up @@ -531,6 +532,11 @@ def main():
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")

def unwrap_model(model):
model = accelerator.unwrap_model(model)
model = model._orig_mod if is_compiled_module(model) else model
return model

# `accelerate` 0.16.0 will have better support for customized saving
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
Expand Down Expand Up @@ -1044,8 +1050,12 @@ def collate_fn(examples):
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}

model_pred = unet(
concatenated_noisy_latents, timesteps, encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
).sample
concatenated_noisy_latents,
timesteps,
encoder_hidden_states,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")

# Gather the losses across all processes for logging (if we use distributed training).
Expand Down Expand Up @@ -1115,7 +1125,7 @@ def collate_fn(examples):
# The models need unwrapping because for compatibility in distributed training mode.
pipeline = StableDiffusionXLInstructPix2PixPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=accelerator.unwrap_model(unet),
unet=unwrap_model(unet),
text_encoder=text_encoder_1,
text_encoder_2=text_encoder_2,
tokenizer=tokenizer_1,
Expand Down Expand Up @@ -1177,7 +1187,7 @@ def collate_fn(examples):
# Create the pipeline using the trained modules and save it.
accelerator.wait_for_everyone()
if accelerator.is_main_process:
unet = accelerator.unwrap_model(unet)
unet = unwrap_model(unet)
if args.use_ema:
ema_unet.copy_to(unet.parameters())

Expand Down