Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -573,6 +573,13 @@ def parse_args(input_args=None):
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--clip_skip",
type=int,
default=None,
help="Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that "
"the output of the pre-final layer will be used for computing the prompt embeddings.",
)

parser.add_argument(
"--text_encoder_lr",
Expand Down Expand Up @@ -1236,7 +1243,7 @@ def tokenize_prompt(tokenizer, prompt, add_special_tokens=False):


# Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt
def encode_prompt(text_encoders, tokenizers, prompt, text_input_ids_list=None):
def encode_prompt(text_encoders, tokenizers, prompt, text_input_ids_list=None, clip_skip=None):
prompt_embeds_list = []

for i, text_encoder in enumerate(text_encoders):
Expand All @@ -1253,7 +1260,11 @@ def encode_prompt(text_encoders, tokenizers, prompt, text_input_ids_list=None):

# We are only ALWAYS interested in the pooled output of the final text encoder
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds[-1][-2]
if clip_skip is None:
prompt_embeds = prompt_embeds[-1][-2]
else:
# "2" because SDXL always indexes from the penultimate layer.
prompt_embeds = prompt_embeds[-1][-(clip_skip + 2)]
bs_embed, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
prompt_embeds_list.append(prompt_embeds)
Expand Down Expand Up @@ -1830,9 +1841,9 @@ def compute_time_ids(crops_coords_top_left, original_size=None):
tokenizers = [tokenizer_one, tokenizer_two]
text_encoders = [text_encoder_one, text_encoder_two]

def compute_text_embeddings(prompt, text_encoders, tokenizers):
def compute_text_embeddings(prompt, text_encoders, tokenizers, clip_skip):
with torch.no_grad():
prompt_embeds, pooled_prompt_embeds = encode_prompt(text_encoders, tokenizers, prompt)
prompt_embeds, pooled_prompt_embeds = encode_prompt(text_encoders, tokenizers, prompt, clip_skip)
prompt_embeds = prompt_embeds.to(accelerator.device)
pooled_prompt_embeds = pooled_prompt_embeds.to(accelerator.device)
return prompt_embeds, pooled_prompt_embeds
Expand All @@ -1842,7 +1853,7 @@ def compute_text_embeddings(prompt, text_encoders, tokenizers):
# the redundant encoding.
if freeze_text_encoder and not train_dataset.custom_instance_prompts:
instance_prompt_hidden_states, instance_pooled_prompt_embeds = compute_text_embeddings(
args.instance_prompt, text_encoders, tokenizers
args.instance_prompt, text_encoders, tokenizers, args.clip_skip
)

# Handle class prompt for prior-preservation.
Expand Down Expand Up @@ -2052,7 +2063,7 @@ def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
if train_dataset.custom_instance_prompts:
if freeze_text_encoder:
prompt_embeds, unet_add_text_embeds = compute_text_embeddings(
prompts, text_encoders, tokenizers
prompts, text_encoders, tokenizers, args.clip_skip
)

else:
Expand Down Expand Up @@ -2147,6 +2158,7 @@ def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
tokenizers=None,
prompt=None,
text_input_ids_list=[tokens_one, tokens_two],
clip_skip=args.clip_skip,
)
unet_added_conditions.update(
{"text_embeds": pooled_prompt_embeds.repeat(elems_to_repeat_text_embeds, 1)}
Expand Down