Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 23 additions & 9 deletions src/diffusers/models/embeddings_flax.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,11 +29,21 @@ def get_sinusoidal_embeddings(
"""Returns the positional encoding (same as Tensor2Tensor).

Args:
timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
embedding_dim: The number of output channels.
min_timescale: The smallest time unit (should probably be 0.0).
max_timescale: The largest time unit.
timesteps (`jnp.ndarray` of shape `(N,)`):
A 1-D array of N indices, one per batch element. These may be fractional.
embedding_dim (`int`):
The number of output channels.
freq_shift (`float`, *optional*, defaults to `1`):
Shift applied to the frequency scaling of the embeddings.
min_timescale (`float`, *optional*, defaults to `1`):
The smallest time unit used in the sinusoidal calculation (should probably be 0.0).
max_timescale (`float`, *optional*, defaults to `1.0e4`):
The largest time unit used in the sinusoidal calculation.
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
Whether to flip the order of sinusoidal components to cosine first.
scale (`float`, *optional*, defaults to `1.0`):
A scaling factor applied to the positional embeddings.

Returns:
a Tensor of timing signals [N, num_channels]
"""
Expand Down Expand Up @@ -61,9 +71,9 @@ class FlaxTimestepEmbedding(nn.Module):

Args:
time_embed_dim (`int`, *optional*, defaults to `32`):
Time step embedding dimension
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
Time step embedding dimension.
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
The data type for the embedding parameters.
"""

time_embed_dim: int = 32
Expand All @@ -83,7 +93,11 @@ class FlaxTimesteps(nn.Module):

Args:
dim (`int`, *optional*, defaults to `32`):
Time step embedding dimension
Time step embedding dimension.
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
Whether to flip the sinusoidal function from sine to cosine.
freq_shift (`float`, *optional*, defaults to `1`):
Frequency shift applied to the sinusoidal embeddings.
"""

dim: int = 32
Expand Down
Loading