Skip to content

Conversation

@khatami-mehrdad
Copy link

Dense Models

EfficientNet-ES (EdgeTPU-Small) and EfficientNet-EL (EdgeTPU-Large) are trained with 8 Quadro RTX 8000 using pytorch-image-models repo.
The training scripts hyper-params are derived from training_hparam_examples.

./distributed_train.sh 8 /imagenet --model efficientnet_es -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.2 --drop-connect 0.2 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .064

./distributed_train.sh 8 /imagenet --model efficientnet_el -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.2 --drop-connect 0.2 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .064

The EfficientNet-ES accuracies are slightly lower than what is reported in training_hparam_examples since we just took the best checkpoint, not the average of 8 best checkpoints. I kept our EfficientNet-ES results for completeness.

Pruned Models

The pruning is done by use of the DG_Prune submodule. The pruning code is provided at my forked pytorch-image-models in DG branch.
The pruning is done using the lottery ticket hypothesis (LTH) algorithm. The pruning hyperparameters are provided in the json files attached in DeGirum/pruned-models efficientnet release.
The training hyperparameters are exactly the same as the dense training.

Results

Model Top1 Acc Top5 Acc
EfficientNet-ES 77.906 94.038
EfficientNet-ES Pruned 75.060 92.438
EfficientNet-EL 81.296 95.562
EfficientNet-EL Pruned 80.318 95.212

…and efficientnet_el_pruned pretrained models to timm/models
@rwightman rwightman merged commit 5e2e4e7 into huggingface:master Mar 17, 2021
guoriyue pushed a commit to guoriyue/pytorch-image-models that referenced this pull request May 24, 2024
adding efficientnet_el, efficientnet_es_pruned and efficientnet_el_pruned pre-trained models
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants