Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/features/CLI.md
Original file line number Diff line number Diff line change
Expand Up @@ -153,6 +153,7 @@ Here are the invoke> command that apply to txt2img:
| --cfg_scale <float>| -C<float> | 7.5 | How hard to try to match the prompt to the generated image; any number greater than 1.0 works, but the useful range is roughly 5.0 to 20.0 |
| --seed <int> | -S<int> | None | Set the random seed for the next series of images. This can be used to recreate an image generated previously.|
| --sampler <sampler>| -A<sampler>| k_lms | Sampler to use. Use -h to get list of available samplers. |
| --karras_max <int> | | 29 | When using k_* samplers, set the maximum number of steps before shifting from using the Karras noise schedule (good for low step counts) to the LatentDiffusion noise schedule (good for high step counts) This value is sticky. [29] |
| --hires_fix | | | Larger images often have duplication artefacts. This option suppresses duplicates by generating the image at low res, and then using img2img to increase the resolution |
| --png_compression <0-9> | -z<0-9> | 6 | Select level of compression for output files, from 0 (no compression) to 9 (max compression) |
| --grid | -g | False | Turn on grid mode to return a single image combining all the images generated by this prompt |
Expand Down
27 changes: 16 additions & 11 deletions ldm/generate.py
Original file line number Diff line number Diff line change
Expand Up @@ -176,6 +176,7 @@ def __init__(
self.free_gpu_mem = free_gpu_mem
self.size_matters = True # used to warn once about large image sizes and VRAM
self.txt2mask = None
self.karras_max = None

# Note that in previous versions, there was an option to pass the
# device to Generate(). However the device was then ignored, so
Expand Down Expand Up @@ -253,6 +254,7 @@ def prompt2image(
variation_amount = 0.0,
threshold = 0.0,
perlin = 0.0,
karras_max = None,
# these are specific to img2img and inpaint
init_img = None,
init_mask = None,
Expand Down Expand Up @@ -331,7 +333,8 @@ def process_image(image,seed):
strength = strength or self.strength
self.seed = seed
self.log_tokenization = log_tokenization
self.step_callback = step_callback
self.step_callback = step_callback
self.karras_max = karras_max
with_variations = [] if with_variations is None else with_variations

# will instantiate the model or return it from cache
Expand Down Expand Up @@ -376,6 +379,11 @@ def process_image(image,seed):
self.sampler_name = sampler_name
self._set_sampler()

# bit of a hack to change the cached sampler's karras threshold to
# whatever the user asked for
if karras_max is not None and isinstance(self.sampler,KSampler):
self.sampler.adjust_settings(karras_max=karras_max)

tic = time.time()
if self._has_cuda():
torch.cuda.reset_peak_memory_stats()
Expand Down Expand Up @@ -815,26 +823,23 @@ def sample_to_image(self, samples):

def _set_sampler(self):
msg = f'>> Setting Sampler to {self.sampler_name}'
karras_max = self.karras_max # set in generate() call
if self.sampler_name == 'plms':
self.sampler = PLMSSampler(self.model, device=self.device)
elif self.sampler_name == 'ddim':
self.sampler = DDIMSampler(self.model, device=self.device)
elif self.sampler_name == 'k_dpm_2_a':
self.sampler = KSampler(
self.model, 'dpm_2_ancestral', device=self.device
)
self.sampler = KSampler(self.model, 'dpm_2_ancestral', device=self.device, karras_max=karras_max)
elif self.sampler_name == 'k_dpm_2':
self.sampler = KSampler(self.model, 'dpm_2', device=self.device)
self.sampler = KSampler(self.model, 'dpm_2', device=self.device, karras_max=karras_max)
elif self.sampler_name == 'k_euler_a':
self.sampler = KSampler(
self.model, 'euler_ancestral', device=self.device
)
self.sampler = KSampler(self.model, 'euler_ancestral', device=self.device, karras_max=karras_max)
elif self.sampler_name == 'k_euler':
self.sampler = KSampler(self.model, 'euler', device=self.device)
self.sampler = KSampler(self.model, 'euler', device=self.device, karras_max=karras_max)
elif self.sampler_name == 'k_heun':
self.sampler = KSampler(self.model, 'heun', device=self.device)
self.sampler = KSampler(self.model, 'heun', device=self.device, karras_max=karras_max)
elif self.sampler_name == 'k_lms':
self.sampler = KSampler(self.model, 'lms', device=self.device)
self.sampler = KSampler(self.model, 'lms', device=self.device, karras_max=karras_max)
else:
msg = f'>> Unsupported Sampler: {self.sampler_name}, Defaulting to plms'
self.sampler = PLMSSampler(self.model, device=self.device)
Expand Down
10 changes: 9 additions & 1 deletion ldm/invoke/args.py
Original file line number Diff line number Diff line change
Expand Up @@ -216,6 +216,8 @@ def dream_prompt_str(self,**kwargs):
switches.append(f'-W {a["width"]}')
switches.append(f'-H {a["height"]}')
switches.append(f'-C {a["cfg_scale"]}')
if a['karras_max'] is not None:
switches.append(f'--karras_max {a["karras_max"]}')
if a['perlin'] > 0:
switches.append(f'--perlin {a["perlin"]}')
if a['threshold'] > 0:
Expand Down Expand Up @@ -669,7 +671,13 @@ def _create_dream_cmd_parser(self):
default=6,
choices=range(0,10),
dest='png_compression',
help='level of PNG compression, from 0 (none) to 9 (maximum). Default is 6.'
help='level of PNG compression, from 0 (none) to 9 (maximum). [6]'
)
render_group.add_argument(
'--karras_max',
type=int,
default=None,
help="control the point at which the K* samplers will shift from using the Karras noise schedule (good for low step counts) to the LatentDiffusion noise schedule (good for high step counts). Set to 0 to use LatentDiffusion for all step values, and to a high value (e.g. 1000) to use Karras for all step values. [29]."
)
img2img_group.add_argument(
'-I',
Expand Down
16 changes: 14 additions & 2 deletions ldm/models/diffusion/ksampler.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,10 @@
extract_into_tensor,
)

# at this threshold, the scheduler will stop using the Karras
# noise schedule and start using the model's schedule
STEP_THRESHOLD = 29

def cfg_apply_threshold(result, threshold = 0.0, scale = 0.7):
if threshold <= 0.0:
return result
Expand Down Expand Up @@ -60,6 +64,9 @@ def __init__(self, model, schedule='lms', device=None, **kwargs):
self.sigmas = None
self.ds = None
self.s_in = None
self.karras_max = kwargs.get('karras_max',STEP_THRESHOLD)
if self.karras_max is None:
self.karras_max = STEP_THRESHOLD

def forward(self, x, sigma, uncond, cond, cond_scale):
x_in = torch.cat([x] * 2)
Expand Down Expand Up @@ -98,8 +105,13 @@ def make_schedule(
rho=7.,
device=self.device,
)
self.sigmas = self.model_sigmas
#self.sigmas = self.karras_sigmas

if ddim_num_steps >= self.karras_max:
print(f'>> Ksampler using model noise schedule (steps > {self.karras_max})')
self.sigmas = self.model_sigmas
else:
print(f'>> Ksampler using karras noise schedule (steps <= {self.karras_max})')
self.sigmas = self.karras_sigmas

# ALERT: We are completely overriding the sample() method in the base class, which
# means that inpainting will not work. To get this to work we need to be able to
Expand Down
14 changes: 13 additions & 1 deletion ldm/models/diffusion/sampler.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,8 @@
ldm.models.diffusion.sampler

Base class for ldm.models.diffusion.ddim, ldm.models.diffusion.ksampler, etc

'''

import torch
import numpy as np
from tqdm import tqdm
Expand Down Expand Up @@ -411,3 +411,15 @@ def q_sample(self,x0,ts):
return self.model.inner_model.q_sample(x0,ts)
'''
return self.model.q_sample(x0,ts)

def adjust_settings(self,**kwargs):
'''
This is a catch-all method for adjusting any instance variables
after the sampler is instantiated. No type-checking performed
here, so use with care!
'''
for k in kwargs.keys():
try:
setattr(self,k,kwargs[k])
except AttributeError:
print(f'** Warning: attempt to set unknown attribute {k} in sampler of type {type(self)}')