Command-line tool for orchestrating multiple AI agents in parallel or sequence. Think "kubectl for AI agents."
- Single Agent Execution: Run one agent with specific action and parameters
- Parallel Orchestration: Run multiple agents simultaneously with rate limiting
- Sequential Workflows: Chain agent operations with data flow between steps
- Rich Terminal Output: Beautiful progress bars, tables, and status indicators
- Prometheus Metrics: Production-ready observability and monitoring
- 100% Test Coverage: Thoroughly tested and reliable
# Install
pip install multi-agent-cli
# Initialize configuration
multi-agent-cli init
# Run single agent
multi-agent-cli run pm track_tasks --path ./src
# Run parallel analysis
multi-agent-cli parallel --agents pm,research,index --path ./src
# Execute workflow
multi-agent-cli workflow code-review.yaml# From PyPI
pip install multi-agent-cli
# From source
git clone https://github.com/kmcallorum/multi-agent-cli.git
cd multi-agent-cli
pip install -e ".[dev]"- Python 3.11+
- pytest-agents 1.0.0+
# Basic usage
multi-agent-cli run AGENT ACTION [OPTIONS]
# Examples
multi-agent-cli run pm track_tasks --path ./src
multi-agent-cli run research analyze_document --path README.md
multi-agent-cli run index index_repository --path ./src
# With JSON parameters
multi-agent-cli run pm track_tasks --params '{"include_done": true}'
# Save output to file
multi-agent-cli run pm track_tasks --output results.json# Run multiple agents in parallel
multi-agent-cli parallel --agents pm,research,index --path ./src
# Limit parallel workers
multi-agent-cli parallel --agents pm,research,index --max-workers 2
# Save aggregated results
multi-agent-cli parallel --agents pm,research --output parallel_results.json# Run a workflow file
multi-agent-cli workflow code-review.yaml
# Strict mode (fail on first error)
multi-agent-cli workflow compliance-check.yaml --strict
# Continue on errors
multi-agent-cli workflow analysis.yaml --continue-on-error# Show current configuration
multi-agent-cli config show
# Validate configuration file
multi-agent-cli config validate agents.yaml
# Initialize with example workflows
multi-agent-cli config init --example-workflows# Start Prometheus metrics server
multi-agent-cli metrics --port 9090
# Access metrics at http://localhost:9090/metricsagents:
pm:
enabled: true
path: "./pm/dist/index.js"
timeout: 60
research:
enabled: true
path: "./research/dist/index.js"
timeout: 90
index:
enabled: true
path: "./index/dist/index.js"
timeout: 120
settings:
max_parallel_workers: 3
default_timeout: 60
metrics_enabled: true
metrics_port: 9090
output:
format: "rich"
verbose: false
save_results: true
results_dir: "./results"name: "Code Quality Analysis"
description: "Comprehensive code quality check"
steps:
- name: "Track Technical Debt"
agent: pm
action: track_tasks
params:
path: "./src"
on_error: continue
- name: "Analyze Documentation"
agent: research
action: analyze_document
params:
path: "./README.md"
on_error: fail
- name: "Index Codebase"
agent: index
action: index_repository
params:
path: "./src"
depends_on:
- "Track Technical Debt"
quality_gates:
max_fixmes: 5
min_documentation_score: 0.8
max_dead_code_percent: 5# Rich terminal output (default)
multi-agent-cli run pm track_tasks
# JSON output
multi-agent-cli --format json run pm track_tasks
# Table output
multi-agent-cli --format table run pm track_tasks# Build image
docker build -t multi-agent-cli .
# Run single agent
docker run -v $(pwd)/src:/workspace/src multi-agent-cli run pm track_tasks
# Run with docker-compose
docker-compose up multi-agent-cli# Clone repository
git clone https://github.com/kmcallorum/multi-agent-cli.git
cd multi-agent-cli
# Install dev dependencies
pip install -e ".[dev]"
# Run tests
pytest
# Run with coverage
pytest --cov=src/multi_agent_cli --cov-report=term-missing
# Lint
ruff check src tests
ruff format src tests
# Type check
mypy srcThe CLI exposes Prometheus metrics when using the metrics command:
agent_invocations_total- Total agent invocations by agent/actionagent_invocations_success_total- Successful invocationsagent_invocations_error_total- Failed invocationsagent_duration_seconds- Execution duration histogramworkflows_executed_total- Total workflows executedworkflows_success_total- Successful workflowsparallel_executions_total- Total parallel executionscli_commands_total- CLI commands executed
See CONTRIBUTING.md for guidelines.
See SECURITY.md for security policy and reporting vulnerabilities.
MIT License - see LICENSE for details.