Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions doc/en/KTransformers-Fine-Tuning_User-Guide.md
Original file line number Diff line number Diff line change
Expand Up @@ -111,7 +111,7 @@ According to the following example, install both the **KTransformers** and **LLa

```shell
# 1. Create a conda environment
conda create -n Kllama python=3.10 # choose from : [3.10, 3.11, 3.12, 3.13]
conda create -n Kllama python=3.12 # choose from : [3.10, 3.11, 3.12, 3.13]
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

medium

The comment still lists Python 3.10 as a supported version, which contradicts the goal of this pull request to remove it as a guide. The Chinese version of this document has already removed 3.10 from the list. For consistency and to avoid user confusion, you should also remove it here.

Suggested change
conda create -n Kllama python=3.12 # choose from : [3.10, 3.11, 3.12, 3.13]
conda create -n Kllama python=3.12 # choose from : [3.11, 3.12, 3.13]

conda install -y -c conda-forge libstdcxx-ng gcc_impl_linux-64
conda install -y -c nvidia/label/cuda-11.8.0 cuda-runtime

Expand All @@ -121,10 +121,10 @@ cd LLaMA-Factory
pip install -e ".[torch,metrics]" --no-build-isolation

# 3. Install the KTransformers wheel that matches your Torch and Python versions, from https://github.com/kvcache-ai/ktransformers/releases/tag/v0.4.1 (Note: The CUDA version can differ from that in the wheel filename.)
pip install ktransformers-0.4.1+cu128torch28fancy-cp310-cp310-linux_x86_64.whl
pip install ktransformers-0.4.1+cu128torch27fancy-cp312-cp312-linux_x86_64.whl

# 4. Install flash-attention, download the corresponding file based on your Python and Torch versions from: https://github.com/Dao-AILab/flash-attention/releases
pip install flash_attn-2.8.3+cu12torch2.8cxx11abiTRUE-cp310-cp310-linux_x86_64.whl
pip install flash_attn-2.8.3+cu12torch2.7cxx11abiTRUE-cp312-cp312-linux_x86_64.whl
# abi=True/False can find from below
# import torch
# print(torch._C._GLIBCXX_USE_CXX11_ABI)
Expand Down
6 changes: 3 additions & 3 deletions doc/zh/KTransformers-Fine-Tuning_User-Guide_zh.md
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,7 @@

```shell
# 1. 安装conda环境
conda create -n Kllama python=3.10 # choose from : [3.10, 3.11, 3.12, 3.13]
conda create -n Kllama python=3.12 # choose from : [3.11, 3.12, 3.13]
conda install -y -c conda-forge libstdcxx-ng gcc_impl_linux-64
conda install -y -c nvidia/label/cuda-11.8.0 cuda-runtime

Expand All @@ -115,10 +115,10 @@ cd LLaMA-Factory
pip install -e ".[torch,metrics]" --no-build-isolation

# 3. 安装对应torch和python版本的KTransformers(CUDA版本可以跟whl命名的不一致),从https://github.com/kvcache-ai/ktransformers/releases/tag/v0.4.1
pip install ktransformers-0.4.1+cu128torch28fancy-cp310-cp310-linux_x86_64.whl
pip install ktransformers-0.4.1+cu128torch27fancy-cp312-cp312-linux_x86_64.whl

# 4. 安装flash-attention,参照python版本和torch版本,从https://github.com/Dao-AILab/flash-attention/releases下载
pip install flash_attn-2.8.3+cu12torch2.8cxx11abiTRUE-cp310-cp310-linux_x86_64.whl
pip install flash_attn-2.8.3+cu12torch2.7cxx11abiTRUE-cp312-cp312-linux_x86_64.whl
# abi=True/False可以用下面代码查看
# import torch
# print(torch._C._GLIBCXX_USE_CXX11_ABI)
Expand Down
2 changes: 1 addition & 1 deletion ktransformers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,4 +8,4 @@
LastEditors : chenxl
LastEditTime : 2025-02-15 03:53:02
'''
__version__ = "0.3.2"
__version__ = "0.4.1"