Skip to content

How to achieve vLLM Row Parallelism correctly? #186

@KeremTurgutlu

Description

@KeremTurgutlu

I am trying to make bitblas quantized weights to work with vLLM's tensor parallelism. In vLLM, tensor parallelism is achieved with column parallelism and row parallelism.

Similar to the reference vLLM integration here qweight, scales and zeros have the following shapes, input dims and output dims:

qweight = Parameter(
            torch.empty(
                output_size_per_partition,
                input_size_per_partition // self.layer_pack_factor,
                device="cuda",
                dtype=torch.uint8,
            ),
            requires_grad=False,
        )
        set_weight_attrs(
            qweight,
            {
                "input_dim": 1,
                "output_dim": 0,
                "packed_dim": 1,
                "pack_factor": self.layer_pack_factor,
            },
        )

        scales = Parameter(
            torch.empty(
                output_size_per_partition,
                input_size_per_partition // self.layer_group_size,
                device="cuda",
                dtype=params_dtype,
            ),
            requires_grad=False,
        )
        set_weight_attrs(
            scales,
            {
                "input_dim": 1,
                "output_dim": 0,
            },
        )

        zeros = Parameter(
            torch.empty(
                output_size_per_partition,
                input_size_per_partition // self.layer_group_size,
                device="cuda",
                dtype=params_dtype,
            ),
            requires_grad=False,
        )
        set_weight_attrs(
            zeros,
            {
                "input_dim": 1,
                "output_dim": 0,
            },
        )

Our vLLM bitblas integration can be found here.

Column Parallel

In column parallelism, parallelization is done along the weight's output dim and the outputs are concatenated along the output's output dim using an all gather operation. Testing this behavior with bitblas works as expected:

# Mimic the output without any tensor parallelism.
bitblas_output = matmul_eng(x, Wq_bitblas, scales_bitblas, zeros_bitblas)

# Reconfigure matmul eng for new dims:
matmul_config = bitblas.MatmulConfig(M=BITBLAS_OPT_M,
                                        N=out_features//2,
                                        K=in_features,
                                        A_dtype="float16",  
                                        W_dtype={4:"uint4",2:"uint2"}[NBITS],
                                        accum_dtype="float16",  
                                        out_dtype="float16",  
                                        layout="nt",  
                                        with_bias=False, 
                                        group_size=GROUPSIZE,
                                        with_scaling=True,  
                                        with_zeros=True,  
                                        zeros_mode="original",  
                                        #fast_decoding=True,
                                    )
matmul_eng = _get_or_create_bitblas_operator(matmul_config)		

# Split weights along the input dimenstion which is the 'N' dimension from matmul eq: (M x K @ K x N). 
Wq_bitblas_split_1, Wq_bitblas_split_2 = Wq_bitblas.split(split_size=Wq_bitblas.size(0) // 2, dim=0)
zeros_bitblas_split_1, zeros_bitblas_split_2 = zeros_bitblas.split(split_size=zeros_bitblas.size(0) // 2, dim=0)
scales_bitblas_split_1, scales_bitblas_split_2 = scales_bitblas.split(split_size=scales_bitblas.size(0) // 2, dim=0)
bitblas_output_split_1 = matmul_eng(x, Wq_bitblas_split_1, scales_bitblas_split_1, zeros_bitblas_split_1)
bitblas_output_split_2 = matmul_eng(x, Wq_bitblas_split_2, scales_bitblas_split_2, zeros_bitblas_split_2)

# Test passes.
bitblas_sharded_output = torch.cat([bitblas_output_split_1, bitblas_output_split_2], dim=1)
assert torch.allclose(bitblas_sharded_output, bitblas_output, atol=1e-2, rtol=1e-2)

Row Parallel

In row parallelism, parallelization is done along weight's input dim (K) and reduced (summed) along the via all reduce (sum) operation.

The outputs from the following test is very different compared to without tensor parallel.

# Mimic the output without any tensor parallelism.
bitblas_output = matmul_eng(x, Wq_bitblas, scales_bitblas, zeros_bitblas)

# Reconfigure matmul eng for new dims:
matmul_config = bitblas.MatmulConfig(M=BITBLAS_OPT_M,
                                        N=out_features,
                                        K=in_features//2,
                                        A_dtype="float16",  
                                        W_dtype={4:"uint4",2:"uint2"}[NBITS],
                                        accum_dtype="float16",  
                                        out_dtype="float16",  
                                        layout="nt",  
                                        with_bias=False, 
                                        group_size=GROUPSIZE,
                                        with_scaling=True,  
                                        with_zeros=True,  
                                        zeros_mode="original",  
                                        #fast_decoding=True,
                                    )
matmul_eng = _get_or_create_bitblas_operator(matmul_config)

# Split weights along the input dimenstion which is the 'K' dimension from matmul eq: (M x K @ K x N). 
Wq_bitblas_split_1, Wq_bitblas_split_2 = Wq_bitblas.split(split_size=Wq_bitblas.size(1) // 2, dim=1)
zeros_bitblas_split_1, zeros_bitblas_split_2 = zeros_bitblas.split(split_size=zeros_bitblas.size(1) // 2, dim=1)
scales_bitblas_split_1, scales_bitblas_split_2 = scales_bitblas.split(split_size=scales_bitblas.size(1) // 2, dim=1)

# Also split the input along the K dimension.
x_1, x_2 = x.split(split_size=x.size(1) // 2, dim=1)

bitblas_output_split_1 = matmul_eng(x_1, Wq_bitblas_split_1, scales_bitblas_split_1, zeros_bitblas_split_1)
bitblas_output_split_2 = matmul_eng(x_2, Wq_bitblas_split_2, scales_bitblas_split_2, zeros_bitblas_split_2)

# Test fails
bitblas_sharded_output = bitblas_output_split_1 + bitblas_output_split_2
assert torch.allclose(bitblas_sharded_output, bitblas_output, atol=1e-2, rtol=1e-2)
Screenshot 2024-09-18 at 12 31 01 PM

Is there a wrong assumption here regarding the layout and/or packing? Maybe the zeros and scales are not correctly split? Appreciate your help. Thanks.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions