Skip to content
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks. It is under the umbrella of the DMTK(http://github.com/microsoft/dmtk) project of Microsoft.
Branch: master
Clone or download
StrikerRUS and chivee [tests] use numpy.testing.assert_allclose (#2207)
* Update test.py

* Update test_consistency.py

* Update test_basic.py

* Update test_sklearn.py

* Update test_sklearn.py

* Update test_engine.py

* more replacements
Latest commit 86269ee Jun 20, 2019
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
.ci [ci] migrate to new Dockerfile (#2174) May 15, 2019
.github [docs] ask to provide LightGBM version for issue (#1958) Jan 18, 2019
.nuget [docs] updated Microsoft GitHub URL (#2152) May 8, 2019
R-package [R-package] mojave install r openmp fix (#2164) Jun 13, 2019
compute @ 36c8913 [ci] update CI stuff (#2079) Apr 9, 2019
docker [docs] updated Microsoft GitHub URL (#2152) May 8, 2019
docs balanced bagging (#2214) Jun 18, 2019
examples [docs] updated Microsoft GitHub URL (#2152) May 8, 2019
helpers [python] removed unused import and variable (#2213) Jun 4, 2019
include/LightGBM balanced bagging (#2214) Jun 18, 2019
pmml [docs][python] made OS detection more reliable and little docs improv… Jun 3, 2018
python-package [docs] add "download" badge (#2224) Jun 17, 2019
src avoid the bad_alloc when overflow. Jun 20, 2019
swig [SWIG] fix swig build warnings/errors on windows (#2141) May 4, 2019
tests [tests] use numpy.testing.assert_allclose (#2207) Jun 20, 2019
windows [docs] updated Microsoft GitHub URL (#2152) May 8, 2019
.appveyor.yml [docs] updated Microsoft GitHub URL (#2152) May 8, 2019
.gitignore [ci][docs] generate docs for C API (#2059) May 5, 2019
.gitmodules Initial GPU acceleration support for LightGBM (#368) Apr 9, 2017
.travis.yml [ci] update macOS on Travis to Mojave (#2086) Apr 10, 2019
.vsts-ci.yml [ci] create GitHub release automatically (#2171) May 15, 2019
CMakeLists.txt fixed minor issues with R package (#2167) May 12, 2019
CODE_OF_CONDUCT.md Create CODE_OF_CONDUCT.md (#803) Aug 18, 2017
LICENSE Add license. Oct 11, 2016
README.md [docs] add "download" badge (#2224) Jun 17, 2019
VERSION.txt update version number at master branch (#1996) Feb 5, 2019
build_r.R removed external dependenciesin build_r.R (fixes #2122) (#2123) May 8, 2019

README.md

LightGBM, Light Gradient Boosting Machine

Azure Pipelines Build Status Appveyor Build Status Travis Build Status Documentation Status License Python Versions PyPI Version Join Gitter at https://gitter.im/Microsoft/LightGBM Slack

LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed and efficient with the following advantages:

  • Faster training speed and higher efficiency.
  • Lower memory usage.
  • Better accuracy.
  • Support of parallel and GPU learning.
  • Capable of handling large-scale data.

For further details, please refer to Features.

Benefitting from these advantages, LightGBM is being widely-used in many winning solutions of machine learning competitions.

Comparison experiments on public datasets show that LightGBM can outperform existing boosting frameworks on both efficiency and accuracy, with significantly lower memory consumption. What's more, parallel experiments show that LightGBM can achieve a linear speed-up by using multiple machines for training in specific settings.

Get Started and Documentation

Our primary documentation is at https://lightgbm.readthedocs.io/ and is generated from this repository. If you are new to LightGBM, follow the installation instructions on that site.

Next you may want to read:

Documentation for contributors:

News

08/15/2017 : Optimal split for categorical features.

07/13/2017 : Gitter is available.

06/20/2017 : Python-package is on PyPI now.

06/09/2017 : LightGBM Slack team is available.

05/03/2017 : LightGBM v2 stable release.

04/10/2017 : LightGBM supports GPU-accelerated tree learning now. Please read our GPU Tutorial and Performance Comparison.

02/20/2017 : Update to LightGBM v2.

02/12/2017 : LightGBM v1 stable release.

01/08/2017 : Release R-package beta version, welcome to have a try and provide feedback.

12/05/2016 : Categorical Features as input directly (without one-hot coding).

12/02/2016 : Release Python-package beta version, welcome to have a try and provide feedback.

More detailed update logs : Key Events.

External (Unofficial) Repositories

Julia-package: https://github.com/Allardvm/LightGBM.jl

JPMML (Java PMML converter): https://github.com/jpmml/jpmml-lightgbm

Treelite (model compiler for efficient deployment): https://github.com/dmlc/treelite

ONNXMLTools (ONNX converter): https://github.com/onnx/onnxmltools

SHAP (model output explainer): https://github.com/slundberg/shap

MMLSpark (Spark-package): https://github.com/Azure/mmlspark

ML.NET (.NET/C#-package): https://github.com/dotnet/machinelearning

LightGBM.NET (.NET/C#-package): https://github.com/rca22/LightGBM.Net

Dask-LightGBM (distributed and parallel Python-package): https://github.com/dask/dask-lightgbm

Support

How to Contribute

LightGBM has been developed and used by many active community members. Your help is very valuable to make it better for everyone.

  • Contribute to the tests to make it more reliable.
  • Contribute to the documentation to make it clearer for everyone.
  • Contribute to the examples to share your experience with other users.
  • Look for issues with tag "help wanted" and submit pull requests to address them.
  • Add your stories and experience to Awesome LightGBM. If LightGBM helped you in a machine learning competition or some research application, we want to hear about it!
  • Open an issue to report problems or recommend new features.

Microsoft Open Source Code of Conduct

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Reference Papers

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, Tie-Yan Liu. "LightGBM: A Highly Efficient Gradient Boosting Decision Tree". Advances in Neural Information Processing Systems 30 (NIPS 2017), pp. 3149-3157.

Qi Meng, Guolin Ke, Taifeng Wang, Wei Chen, Qiwei Ye, Zhi-Ming Ma, Tie-Yan Liu. "A Communication-Efficient Parallel Algorithm for Decision Tree". Advances in Neural Information Processing Systems 29 (NIPS 2016), pp. 1279-1287.

Huan Zhang, Si Si and Cho-Jui Hsieh. "GPU Acceleration for Large-scale Tree Boosting". SysML Conference, 2018.

Note: If you use LightGBM in your GitHub projects, please add lightgbm in the requirements.txt.

License

This project is licensed under the terms of the MIT license. See LICENSE for additional details.

You can’t perform that action at this time.