This repository was archived by the owner on Jun 3, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 192
Add deepsparse.analyze
#300
Merged
Merged
Changes from all commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
7f05c6d
Add `deepsparse.analyze`
mgoin df2e1a3
Comment
mgoin f4f6169
Style and quality
mgoin dd3df95
Add default WAND_ENABLE_SP_BENCH, quiet flag, and JSON export
mgoin 1997baf
Merge branch 'main' into analyze-model
mgoin 81f30be
Merge branch 'main' into analyze-model
mgoin File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,328 @@ | ||
| # Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved. | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, | ||
| # software distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
|
|
||
| """ | ||
| Analysis script for ONNX models with the DeepSparse engine. | ||
|
|
||
| ########## | ||
| Command help: | ||
| usage: deepsparse.analyze [-h] [-wi NUM_WARMUP_ITERATIONS] | ||
| [-bi NUM_ITERATIONS] [-ncores NUM_CORES] | ||
| [-b BATCH_SIZE] [-ks KERNEL_SPARSITY] | ||
| [-ksf KERNEL_SPARSITY_FILE] | ||
| [--optimization OPTIMIZATION] [-i INPUT_SHAPES] [-q] | ||
| [-x EXPORT_PATH] | ||
| model_path | ||
|
|
||
| Analyze ONNX models in the DeepSparse Engine | ||
|
|
||
| positional arguments: | ||
| model_path Path to an ONNX model file or SparseZoo model stub | ||
|
|
||
| optional arguments: | ||
| -h, --help show this help message and exit | ||
| -wi NUM_WARMUP_ITERATIONS, --num_warmup_iterations NUM_WARMUP_ITERATIONS | ||
| The number of warmup runs that will be executed before | ||
| the actual benchmarking | ||
| -bi NUM_ITERATIONS, --num_iterations NUM_ITERATIONS | ||
| The number of times the benchmark will be run | ||
| -ncores NUM_CORES, --num_cores NUM_CORES | ||
| The number of physical cores to run the analysis on, | ||
| defaults to all physical cores available on the system | ||
| -b BATCH_SIZE, --batch_size BATCH_SIZE | ||
| The number of inputs that will run through the model | ||
| at a time | ||
| -ks KERNEL_SPARSITY, --kernel_sparsity KERNEL_SPARSITY | ||
| Impose kernel sparsity for all convolutions. [0.0-1.0] | ||
| -ksf KERNEL_SPARSITY_FILE, --kernel_sparsity_file KERNEL_SPARSITY_FILE | ||
| Filepath to per-layer kernel sparsities JSON | ||
| --optimization OPTIMIZATION | ||
| To enable or disable optimizations (Tensor Columns) | ||
| -i INPUT_SHAPES, --input_shapes INPUT_SHAPES | ||
| Override the shapes of the inputs, i.e. -shapes | ||
| "[1,2,3],[4,5,6],[7,8,9]" results in input0=[1,2,3] | ||
| input1=[4,5,6] input2=[7,8,9] | ||
| -q, --quiet Lower logging verbosity | ||
| -x EXPORT_PATH, --export_path EXPORT_PATH | ||
| Store results into a JSON file | ||
| """ | ||
|
|
||
| import argparse | ||
| import json | ||
| import os | ||
|
|
||
| from deepsparse import analyze_model | ||
| from deepsparse.utils import ( | ||
| generate_random_inputs, | ||
| model_to_path, | ||
| override_onnx_input_shapes, | ||
| parse_input_shapes, | ||
| ) | ||
|
|
||
|
|
||
| def parse_args(): | ||
| parser = argparse.ArgumentParser( | ||
| description="Analyze ONNX models in the DeepSparse Engine" | ||
| ) | ||
|
|
||
| parser.add_argument( | ||
| "model_path", | ||
| type=str, | ||
| help="Path to an ONNX model file or SparseZoo model stub", | ||
| ) | ||
| parser.add_argument( | ||
| "-wi", | ||
| "--num_warmup_iterations", | ||
| help="The number of warmup runs that will be executed before the \ | ||
| actual benchmarking", | ||
| type=int, | ||
| default=5, | ||
| ) | ||
| parser.add_argument( | ||
| "-bi", | ||
| "--num_iterations", | ||
| help="The number of times the benchmark will be run", | ||
| type=int, | ||
| default=5, | ||
| ) | ||
| parser.add_argument( | ||
| "-ncores", | ||
| "--num_cores", | ||
| type=int, | ||
| default=None, | ||
| help=( | ||
| "The number of physical cores to run the analysis on, " | ||
| "defaults to all physical cores available on the system" | ||
| ), | ||
| ) | ||
| parser.add_argument( | ||
| "-b", | ||
| "--batch_size", | ||
| help="The number of inputs that will run through the model at a time", | ||
| type=int, | ||
| default=1, | ||
| ) | ||
| parser.add_argument( | ||
| "-ks", | ||
| "--kernel_sparsity", | ||
| help="Impose kernel sparsity for all convolutions. [0.0-1.0]", | ||
| type=float, | ||
| ) | ||
| parser.add_argument( | ||
| "-ksf", | ||
| "--kernel_sparsity_file", | ||
| help="Filepath to per-layer kernel sparsities JSON", | ||
| type=str, | ||
| ) | ||
| parser.add_argument( | ||
| "--optimization", | ||
| help="To enable or disable optimizations (Tensor Columns)", | ||
| type=bool, | ||
| default=True, | ||
| ) | ||
| parser.add_argument( | ||
| "-i", | ||
| "--input_shapes", | ||
| help="Override the shapes of the inputs, " | ||
| 'i.e. -shapes "[1,2,3],[4,5,6],[7,8,9]" results in ' | ||
| "input0=[1,2,3] input1=[4,5,6] input2=[7,8,9]", | ||
| type=str, | ||
| default="", | ||
| ) | ||
| parser.add_argument( | ||
| "-q", | ||
| "--quiet", | ||
| help="Lower logging verbosity", | ||
| action="store_true", | ||
| default=False, | ||
| ) | ||
| parser.add_argument( | ||
| "-x", | ||
| "--export_path", | ||
| help="Store results into a JSON file", | ||
| type=str, | ||
| default=None, | ||
| ) | ||
|
|
||
| return parser.parse_args() | ||
|
|
||
|
|
||
| def layer_info_to_string(li, format_str): | ||
| if li["name"] == "sub_pyramid": | ||
| return format_str.format(li["name"], "[]", "[]", "[]", 0, 0, 0, 0, "") | ||
| else: | ||
| return format_str.format( | ||
| li["name"], | ||
| "{}".format(list(li["output_dims"].values())), | ||
| "{}".format(list(li["kernel_dims"].values())), | ||
| "{}".format(list(li["strides"].values())), | ||
| li["activation_sparsity"], | ||
| li["average_run_time_in_ms"], | ||
| li["average_utilization"] * 100.0, | ||
| li["average_teraflops_per_second"], | ||
| li["canonical_name"], | ||
| ) | ||
|
|
||
|
|
||
| def construct_layer_table(result): | ||
| table_str = ( | ||
| "Name | OutDims | " | ||
| "KerDims | Strides | ActSpars | " | ||
| "Time(ms) | Util(%) | TFLOPS | Canonical Name\n" | ||
| ) | ||
| info_format_base = ( | ||
| "{:26} | {:26} | {:12} | {: >#08.4f} | " | ||
| "{: >#08.4f} | {: >#08.4f} | {: >#08.4f} | {:12}" | ||
| ) | ||
| for li in result["layer_info"]: | ||
| table_str += layer_info_to_string( | ||
| li, | ||
| "{:28}| " + info_format_base + "\n", | ||
| ) | ||
| for sub_li in li["sub_layer_info"]: | ||
| table_str += layer_info_to_string( | ||
| sub_li, | ||
| " {:26}| " + info_format_base + "\n", | ||
| ) | ||
|
|
||
| table_str += "Total Time(MS): {:05f}\n".format(result["average_total_time"]) | ||
| table_str += "Items per second: {:05f}\n".format(result["items_per_second"]) | ||
| table_str += "Batch Size: {}\n".format(result["batch_size"]) | ||
| table_str += "Number of threads: {}\n".format(result["num_threads"]) | ||
|
|
||
| return table_str | ||
|
|
||
|
|
||
| def process_line_item(total_layer_time, detailed_layer_time, li, strip_name): | ||
| if "average_run_time_in_ms" not in li: | ||
| # nothing to process | ||
| return | ||
|
|
||
| layer_type = li["name"] | ||
| if strip_name: | ||
| # peel off unique number | ||
| layer_type = layer_type.rsplit("_", 1)[0] | ||
| # peel off ks percentage | ||
| layer_type = layer_type.rsplit("-", 1)[0] | ||
mgoin marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
|
||
| avg_layer_time = li["average_run_time_in_ms"] | ||
|
|
||
| if layer_type in total_layer_time: | ||
| total_layer_time[layer_type] += avg_layer_time | ||
| else: | ||
| total_layer_time[layer_type] = avg_layer_time | ||
|
|
||
| # Record detailed layer types as well | ||
| if "kernel_dims" in li: | ||
| kerdims = list(li["kernel_dims"].values()) | ||
| if kerdims: | ||
| detailed_layer_type = f"{layer_type}|kernel={kerdims}" | ||
| if detailed_layer_type in detailed_layer_time: | ||
| detailed_layer_time[detailed_layer_type] += avg_layer_time | ||
| else: | ||
| detailed_layer_time[detailed_layer_type] = avg_layer_time | ||
|
|
||
|
|
||
| def construct_layer_statistics(result): | ||
| # Percentage Statistics | ||
| total_layer_time = {} | ||
| detailed_layer_time = {} | ||
| for li in result["layer_info"]: | ||
| if len(li["sub_layer_info"]) == 0: | ||
| process_line_item(total_layer_time, detailed_layer_time, li, True) | ||
| else: | ||
| for sli in li["sub_layer_info"]: | ||
| process_line_item(total_layer_time, detailed_layer_time, sli, False) | ||
|
|
||
| summed_total_time = 0.0 | ||
| for k, v in total_layer_time.items(): | ||
| summed_total_time += v | ||
|
|
||
| perc_str = "== Layer Breakdown ==\n" | ||
| perc_str += "Name | Summed Time | Percent Taken\n" | ||
| for name, val in total_layer_time.items(): | ||
| # Print summary for this type of layer | ||
| perc_str += "{:30} | {:8.3f} | {:4.2f}%\n".format( | ||
| name, val, (val / summed_total_time) * 100.0 | ||
| ) | ||
|
|
||
| # Do the same for any sub-types recorded (there can be none) | ||
| sublayers = [ | ||
| (key.split("|", 1)[1], value) | ||
| for key, value in detailed_layer_time.items() | ||
| if name == key.split("|", 1)[0] | ||
| ] | ||
| for subname, subval in sublayers: | ||
| perc_str += " {:28} | {:8.3f} | {:4.2f}%\n".format( | ||
| subname, subval, (subval / summed_total_time) * 100.0 | ||
| ) | ||
|
|
||
| batch_size = int(result["batch_size"]) | ||
| perc_str += "== Summed Total Time: {:.4f} ms\n".format(summed_total_time) | ||
| perc_str += "== Items per second: {:.4f}\n".format( | ||
| (1000.0 / summed_total_time) * batch_size | ||
| ) | ||
|
|
||
| return perc_str | ||
|
|
||
|
|
||
| def main(): | ||
| args = parse_args() | ||
|
|
||
| input_shapes = parse_input_shapes(args.input_shapes) | ||
|
|
||
| if args.optimization: | ||
| os.environ["WAND_ENABLE_SP_BENCH"] = "1" | ||
|
|
||
| # Imposed KS can take either a float or a file, so overwrite with file if we have it | ||
| imposed_kernel_sparsity = args.kernel_sparsity | ||
| if args.kernel_sparsity_file: | ||
| imposed_kernel_sparsity = args.kernel_sparsity_file | ||
|
|
||
| orig_model_path = args.model_path | ||
| model_path = model_to_path(args.model_path) | ||
|
|
||
| print("Analyzing model: {}".format(orig_model_path)) | ||
|
|
||
| if input_shapes: | ||
| with override_onnx_input_shapes(model_path, input_shapes) as tmp_path: | ||
| input_list = generate_random_inputs(tmp_path, args.batch_size) | ||
| else: | ||
| input_list = generate_random_inputs(model_path, args.batch_size) | ||
|
|
||
| result = analyze_model( | ||
| model_path, | ||
| input_list, | ||
| batch_size=args.batch_size, | ||
| num_cores=args.num_cores, | ||
| num_iterations=args.num_iterations, | ||
| num_warmup_iterations=args.num_warmup_iterations, | ||
| optimization_level=args.optimization, | ||
| imposed_ks=imposed_kernel_sparsity, | ||
| input_shapes=input_shapes, | ||
| ) | ||
|
|
||
| if args.quiet: | ||
| print(construct_layer_table(result)) | ||
| print(construct_layer_statistics(result)) | ||
|
|
||
| if args.export_path: | ||
| # Export results | ||
| print("Saving analysis results to JSON file at {}".format(args.export_path)) | ||
| with open(args.export_path, "w") as out: | ||
| json.dump(result, out, indent=2) | ||
|
|
||
|
|
||
| if __name__ == "__main__": | ||
| main() | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.