This project implements a real-time object detection system using OpenCV's DNN module and a pre-trained MobileNet SSD model trained on the COCO dataset. It captures video from your webcam and detects 80+ classes of objects with bounding boxes and confidence scores.
- Real-time object detection from webcam input
- Uses pre-trained MobileNet SSD (TensorFlow model)
- Draws bounding boxes and labels with confidence
- Lightweight and fast; suitable for CPU inference
- Python
- OpenCV (
cv2) - TensorFlow SSD (frozen graph)
- COCO Dataset class labels
main.py– Main script for detectioncoco.names– List of class labels from the COCO datasetssd_mobilenet_v3_large_coco_2020_01_14.pbtxt– Configuration file for the modelfrozen_inference_graph.pb– Pre-trained model weights
git clone https://github.com/notRamish/object-detection-system.git
cd object-detection-systempip install -r requirements.txtpython detect.pyTo quit; press 'q'