-
Notifications
You must be signed in to change notification settings - Fork 3.9k
Closed
Description
When running the first usage example on a machine without GPU (on Heroku), I have encountered an error message.
This is the usage example:
import torch
import clip
from PIL import Image
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)
image = preprocess(Image.open("CLIP.png")).unsqueeze(0).to(device)
text = clip.tokenize(["a diagram", "a dog", "a cat"]).to(device)
with torch.no_grad():
image_features = model.encode_image(image)
text_features = model.encode_text(text)
logits_per_image, logits_per_text = model(image, text)
probs = logits_per_image.softmax(dim=-1).cpu().numpy()
print("Label probs:", probs) # prints: [[0.9927937 0.00421068 0.00299572]]This is the error message:
RuntimeError: Cannot call numpy() on Tensor that requires grad
I have followed the recommendation displayed along the error message, and changed this line from:
probs = logits_per_image.softmax(dim=-1).cpu().numpy()to:
probs = logits_per_image.softmax(dim=-1).cpu().detach().numpy()I have no idea whether the issue is specific to my machine, but I might as well mention it here.
Metadata
Metadata
Assignees
Labels
No labels