Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
88 changes: 38 additions & 50 deletions Code-Sleep-Python/Classification/code.py
Original file line number Diff line number Diff line change
@@ -1,88 +1,76 @@
import random

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
data = pd.read_csv('https://s3.amazonaws.com/demo-datasets/wine.csv')
import sklearn.decomposition
from matplotlib.colors import ListedColormap
# More accuracy
from sklearn.neighbors import KNeighborsClassifier


def accuracy(predictions, outcomes):
# Enter your code here!
occur = 0
v = np.array(predictions) == np.array(outcomes)
occur = np.sum(v)
return occur

df2 = data.drop('color', axis=1) # color is redundant

data = pd.read_csv('https://s3.amazonaws.com/demo-datasets/wine.csv')

import numpy as np
df2 = data.drop('color', axis=1) # color is redundant

numeric_data = df2.values

numeric_data = (numeric_data - np.mean(numeric_data)) / (np.std(numeric_data))

numeric_data = (numeric_data - np.mean(numeric_data))/(np.std(numeric_data))

import sklearn.decomposition
pca = sklearn.decomposition.PCA(n_components=2)
principal_components = pca.fit(numeric_data).transform(numeric_data)





import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from matplotlib.backends.backend_pdf import PdfPages
observation_colormap = ListedColormap(['red', 'blue'])
x = principal_components[:,0]
y = principal_components[:,1]
x = principal_components[:, 0]
y = principal_components[:, 1]

plt.title("Principal Components of Wine")
plt.scatter(x, y, alpha = 0.2,
c = data['high_quality'], cmap = observation_colormap, edgecolors = 'none')
plt.xlim(-8, 8); plt.ylim(-8, 8)
plt.xlabel("Principal Component 1"); plt.ylabel("Principal Component 2")
plt.scatter(x, y, alpha=0.2,
c=data['high_quality'], cmap=observation_colormap,
edgecolors='none')
plt.xlim(-8, 8)
plt.ylim(-8, 8)
plt.xlabel("Principal Component 1")
plt.ylabel("Principal Component 2")
plt.show()

x = np.array([1, 2, 3])
y = np.array([1, 2, 4])

print(accuracy(x, y))

print(accuracy([], data["high_quality"]))


def accuracy(predictions, outcomes):
# Enter your code here!
occur =0
for i in range(len(predictions)):
if(predictions[i] == outcomes[i]):
occur += 1
return occur


x = np.array([1,2,3])
y = np.array([1,2,4])

print (accuracy(x,y))


print(accuracy(0,data["high_quality"]))


############################## More accuracy
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors = 5)
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(numeric_data, data['high_quality'])
# Enter your code here!

library_predictions = knn.predict(numeric_data)

print(accuracy(library_predictions,data['high_quality']))
print(accuracy(library_predictions, data['high_quality']))

################
n_rows = data.shape[0]

print()
random.seed(123)
selection = random.sample(range(n_rows), 10)


predictors = np.array(numeric_data)
training_indices = [i for i in range(len(predictors)) if i not in selection]
outcomes = np.array(data["high_quality"])

my_predictions = [knn_predict(p, predictors[training_indices,:], outcomes, k=5) for p in predictors[selection]]
percentage = accuracy(my_predictions,data.high_quality[selection])
my_predictions = [
knn.predict(predictors[training_indices, :]) for p in
predictors[selection]]
percentage = accuracy(my_predictions, outcomes)

print(percentage)





Loading