Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions backends/arm/arm_partitioner.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,7 @@ def is_node_supported(self, submodules, node: torch.fx.Node) -> bool:
exir_ops.edge.aten.slice_copy.Tensor,
exir_ops.edge.aten.sub.Tensor,
exir_ops.edge.aten.sum.dim_IntList,
exir_ops.edge.aten.tanh.default,
exir_ops.edge.aten.view_copy.default,
exir_ops.edge.aten.clone.default,
exir_ops.edge.aten.mean.dim,
Expand Down
1 change: 1 addition & 0 deletions backends/arm/operators/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@
op_squeeze,
op_sub,
op_sum,
op_tanh,
op_transpose,
op_unsqueeze,
op_view,
Expand Down
86 changes: 86 additions & 0 deletions backends/arm/operators/op_tanh.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
# Copyright 2024 Arm Limited and/or its affiliates.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

# pyre-unsafe
from typing import List

import numpy as np

import serializer.tosa_serializer as ts
from executorch.backends.arm.operators.node_visitor import (
NodeVisitor,
register_node_visitor,
)
from executorch.backends.arm.tosa_mapping import TosaArg

from executorch.backends.arm.tosa_quant_utils import (
dequantize_value,
get_quant_node_args,
QuantArgs,
quantize_value,
)
from serializer.tosa_serializer import TosaOp
from torch.fx import Node


@register_node_visitor
class TanhVisitor(NodeVisitor):
target = "aten.tanh.default"

def __init__(self, *args):
super().__init__(*args)

def define_node(
self,
node: Node,
tosa_graph: ts.TosaSerializer,
inputs: List[TosaArg],
output: TosaArg,
is_quant_node: bool,
) -> None:

assert len(node.all_input_nodes) == 1

if is_quant_node:
# Assume quantized input is 8 bit.
assert len(node.users) == 1

# Create attribute for 8 bit table lookup.
input_node = node.all_input_nodes[0]
in_quantargs = get_quant_node_args(input_node)
output_node = list(node.users)[0]
out_quantargs = get_quant_node_args(output_node)

table = tanh_table_8bit(in_quantargs, out_quantargs)
table_attr = ts.TosaSerializerAttribute()
table_attr.TableAttribute(table)

tosa_graph.addOperator(
TosaOp.Op().TABLE, [inputs[0].name], [output.name], table_attr
)
else:
tosa_graph.addOperator(TosaOp.Op().TANH, [inputs[0].name], [output.name])


def tanh_table_8bit(in_quantargs: QuantArgs, out_quantargs: QuantArgs):
"""
Returns a table mapping 256 entries to tanh([qmin,qmax])
Reference: https://www.mlplatform.org/tosa/tosa_spec.html#_tanh
"""

def tanh(x):
# Convert quantized input to floating point tanh input space.
v = dequantize_value(x, in_quantargs)
# Compute tanh.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

curious why not numpy.tanh or torch.nn.Tanh?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Hi,

Thanks for review! I just kept this consistent with sigmoid.: #4114
I am happy to update this though if needed.

Thanks,
Saoirse

v = np.exp(-2.0 * v)
v = (1.0 - v) / (1.0 + v)

# Convert tanh output back to quantized space.
return quantize_value(v, out_quantargs)

return [
tanh(x)
for x in np.linspace(in_quantargs.qmin, in_quantargs.qmax, 256, dtype=np.int8)
]
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,7 @@ def _annotate_one_to_one(
torch.ops.aten.reciprocal.default,
torch.ops.aten.rsqrt.default,
torch.ops.aten.sigmoid.default,
torch.ops.aten.tanh.default,
)
for node in gm.graph.nodes:
if node.op != "call_function" or node.target not in one_to_one_ops:
Expand Down
134 changes: 134 additions & 0 deletions backends/arm/test/ops/test_tanh.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# Copyright 2024 Arm Limited and/or its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import unittest

from typing import Tuple

import torch

from executorch.backends.arm.test import common
from executorch.backends.arm.test.tester.arm_tester import ArmTester
from executorch.exir.backend.compile_spec_schema import CompileSpec
from parameterized import parameterized


test_data_suite = [
# (test_name, test_data)
("zeros", torch.zeros(10, 10, 10, 10)),
("ones", torch.ones(10, 10, 10)),
("rand", torch.rand(10, 10) - 0.5),
("randn_pos", torch.randn(10) + 10),
("randn_neg", torch.randn(10) - 10),
("ramp", torch.arange(-16, 16, 0.2)),
]


class TestTanh(unittest.TestCase):
class Tanh(torch.nn.Module):
def __init__(self):
super().__init__()
self.tanh = torch.nn.Tanh()

def forward(self, x):
return self.tanh(x)

def _test_tanh_tosa_MI_pipeline(
self, module: torch.nn.Module, test_data: Tuple[torch.tensor]
):
(
ArmTester(
module,
example_inputs=test_data,
compile_spec=common.get_tosa_compile_spec(),
)
.export()
.check(["torch.ops.aten.tanh.default"])
.check_not(["torch.ops.quantized_decomposed"])
.to_edge()
.partition()
.check_not(["executorch_exir_dialects_edge__ops_aten_tanh_default"])
.check_count({"torch.ops.higher_order.executorch_call_delegate": 1})
.to_executorch()
.run_method_and_compare_outputs(inputs=test_data)
)

def _test_tanh_tosa_BI_pipeline(self, module: torch.nn.Module, test_data: Tuple):
(
ArmTester(
module,
example_inputs=test_data,
compile_spec=common.get_tosa_compile_spec(),
)
.quantize()
.export()
.check(["torch.ops.aten.tanh.default"])
.check(["torch.ops.quantized_decomposed"])
.to_edge()
.partition()
.check_not(["executorch_exir_dialects_edge__ops_aten_tanh_default"])
.check_count({"torch.ops.higher_order.executorch_call_delegate": 1})
.to_executorch()
.run_method_and_compare_outputs(inputs=test_data)
)

def _test_tanh_tosa_ethos_BI_pipeline(
self,
compile_spec: list[CompileSpec],
module: torch.nn.Module,
test_data: Tuple[torch.tensor],
):
(
ArmTester(
module,
example_inputs=test_data,
compile_spec=compile_spec,
)
.quantize()
.export()
.check_count({"torch.ops.aten.tanh.default": 1})
.check(["torch.ops.quantized_decomposed"])
.to_edge()
.partition()
.check_not(["executorch_exir_dialects_edge__ops_aten_tanh_default"])
.check_count({"torch.ops.higher_order.executorch_call_delegate": 1})
.to_executorch()
)

def _test_tanh_tosa_u55_BI_pipeline(
self, module: torch.nn.Module, test_data: Tuple[torch.tensor]
):
self._test_tanh_tosa_ethos_BI_pipeline(
common.get_u55_compile_spec(), module, test_data
)

def _test_tanh_tosa_u85_BI_pipeline(
self, module: torch.nn.Module, test_data: Tuple[torch.tensor]
):
self._test_tanh_tosa_ethos_BI_pipeline(
common.get_u85_compile_spec(), module, test_data
)

@parameterized.expand(test_data_suite)
def test_tanh_tosa_MI(
self,
test_name: str,
test_data: torch.Tensor,
):
self._test_tanh_tosa_MI_pipeline(self.Tanh(), (test_data,))

@parameterized.expand(test_data_suite)
def test_tanh_tosa_BI(self, test_name: str, test_data: torch.Tensor):
self._test_tanh_tosa_BI_pipeline(self.Tanh(), (test_data,))

@parameterized.expand(test_data_suite)
def test_tanh_tosa_u55_BI(self, test_name: str, test_data: torch.Tensor):
self._test_tanh_tosa_u55_BI_pipeline(self.Tanh(), (test_data,))

@parameterized.expand(test_data_suite)
def test_tanh_tosa_u85_BI(self, test_name: str, test_data: torch.Tensor):
self._test_tanh_tosa_u85_BI_pipeline(self.Tanh(), (test_data,))
Loading