Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions backends/arm/_passes/arm_pass_manager.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
AnnotateChannelsLastDimOrder,
)
from executorch.backends.arm._passes.cast_int64_pass import CastInt64ToInt32Pass
from executorch.backends.arm._passes.conv1d_unsqueeze_pass import Conv1dUnsqueezePass
from executorch.backends.arm._passes.convert_expand_copy_to_repeat import (
ConvertExpandCopyToRepeatPass,
)
Expand Down Expand Up @@ -69,6 +70,7 @@ def transform_to_backend_pipeline(
self.add_pass(DecomposeDivPass())
self.add_pass(InsertSqueezeAfterSumPass())
self.add_pass(ConvertSplitToSlicePass())
self.add_pass(Conv1dUnsqueezePass(exported_program))
self.add_pass(DecomposeSoftmaxesPass())
for spec in compile_spec:
if spec.key == "permute_memory_format":
Expand Down
47 changes: 47 additions & 0 deletions backends/arm/_passes/arm_pass_utils.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# Copyright 2024 Arm Limited and/or its affiliates.
# All rights reserved.
#
Expand All @@ -9,11 +10,57 @@
import torch
import torch.fx

from executorch.exir import ExportedProgram
from executorch.exir.dialects._ops import ops as exir_ops

from torch._export.utils import (
get_buffer,
get_lifted_tensor_constant,
get_param,
is_buffer,
is_lifted_tensor_constant,
is_param,
)
from torch._ops import OpOverload
from torch._subclasses.fake_tensor import FakeTensor


def is_get_attr_node(node: torch.fx.Node) -> bool:
"""
Returns true if the given node is a get attr node for a tensor of the model
"""
return isinstance(node, torch.fx.Node) and node.op == "get_attr"


def is_param_node(exp_prog: ExportedProgram, node: torch.fx.Node) -> bool:
return (
is_get_attr_node(node)
or is_param(exp_prog, node)
or is_buffer(exp_prog, node)
or is_lifted_tensor_constant(exp_prog, node)
)


def get_param_tensor(
exp_prog: ExportedProgram, node: torch.fx.Node
) -> Optional[torch.Tensor]:
if node is None:
return None
elif is_param(exp_prog, node):
return get_param(exp_prog, node)
elif is_buffer(exp_prog, node):
return get_buffer(exp_prog, node)
elif is_lifted_tensor_constant(exp_prog, node):
return get_lifted_tensor_constant(exp_prog, node)
elif is_get_attr_node(node):
# This is a hack to support both lifted and unlifted graph
try:
return getattr(node.graph.owning_module, node.target)
except AttributeError:
return getattr(exp_prog.graph_module, node.target)
raise RuntimeError(f"unsupported param type, {node.op}.")


def create_node(
graph: torch.fx.Graph,
op_target: OpOverload,
Expand Down
164 changes: 164 additions & 0 deletions backends/arm/_passes/conv1d_unsqueeze_pass.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,164 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# Copyright 2024 Arm Limited and/or its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.


import torch
from executorch.backends.arm._passes.arm_pass_utils import (
create_node,
get_param_tensor,
insert_q_dq_pair,
is_param_node,
)
from executorch.backends.arm.tosa_quant_utils import dq_op, q_op
from executorch.exir import ExportedProgram
from executorch.exir.dialects._ops import ops as exir_ops
from executorch.exir.pass_base import ExportPass, PassResult


class Conv1dUnsqueezePass(ExportPass):
Copy link
Contributor

@digantdesai digantdesai Oct 25, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can we use xnnpack's pass here somehow (and keep quant logic separate)? OK with duplication TBH if it means less complexity or cross deps

"""
This pass is used to change conv1d ops into conv2d since TOSA only
supports 2d and 3d convolution. This is done by modifying the graph to do the
following:
1) unsqueeze the convolution's input from 3d to 4d
2) if the input to unsqueeze is quantized, insert q/dq-pair after unsqueeze
3) perform a conv2d (with a modified version of the original conv1d args)
4) squeeze the output back down to 3d.
5) if all users of squeeze are quantized, insert q/dq-pair before squeeze
"""

def __init__(self, exported_program: ExportedProgram) -> None:
super().__init__()
self.exported_program = exported_program

def unsqueeze_kernel_weights(self, kernel_node):
"""
Unsqueezes the weights of a conv1d to make it 4 dimensional.

Args:
kernel_node: the weights of conv1d node to be unsqueezed
"""
kernel_param_3d = get_param_tensor(self.exported_program, kernel_node)
if kernel_param_3d is None:
raise AssertionError("Expected param tensor for the kernel node")

kernel_param_4d = torch.nn.Parameter(
data=kernel_param_3d.data.contiguous().unsqueeze(dim=-1),
requires_grad=False,
)

if torch._export.utils.is_param(self.exported_program, kernel_node):
parameter_name = self.exported_program.graph_signature.inputs_to_parameters[
kernel_node.name
]
self.exported_program.state_dict[parameter_name] = kernel_param_4d
kernel_node.meta["val"] = kernel_node.meta["val"].data.unsqueeze(dim=-1)
elif torch._export.utils.is_buffer(self.exported_program, kernel_node):
buffer_name = self.exported_program.graph_signature.inputs_to_buffers[
kernel_node.name
]
self.exported_program.state_dict[buffer_name] = kernel_param_4d
kernel_node.meta["val"] = kernel_node.meta["val"].data.unsqueeze(dim=-1)
elif torch._export.utils.is_lifted_tensor_constant(
self.exported_program, kernel_node
):
buffer_name = (
self.exported_program.graph_signature.inputs_to_lifted_tensor_constants[
kernel_node.name
]
)
self.exported_program.constants[buffer_name] = kernel_param_4d
kernel_node.meta["val"] = kernel_node.meta["val"].data.unsqueeze(dim=-1)
else:
setattr(
kernel_node.graph.owning_module,
kernel_node.target,
kernel_param_4d,
)

def call(self, graph_module: torch.fx.GraphModule):
graph = graph_module.graph
node_list = list(graph.nodes)
for node in node_list:
if node.op == "call_function":
if node.target == exir_ops.edge.aten.convolution.default:
stride = list(node.args[3])
if len(stride) != 1:
# skip conv if it is not 1d
continue

kernel_node = node.args[1]
if kernel_node.target == dq_op:
kernel_node = kernel_node.args[0]

if not is_param_node(self.exported_program, kernel_node):
raise AssertionError(
"Expected op for convolution weight node to be a get_attr node or a parameter"
)

# Modify graph such that the conv changes from 1d to 2d
self.unsqueeze_kernel_weights(kernel_node)

# (b) Extend stride, padding, and dilation for extra dim
node.args = (
node.args[0],
node.args[1],
node.args[2],
node.args[3] + [1], # stride
node.args[4] + [0], # padding
node.args[5] + [1], # dilation
node.args[6],
node.args[7] + [0],
node.args[8],
)

# c. Add unsqueeze to input (3d -> 4d) and squeeze to output (4d -> 3d)
# unsqueeze -> conv2d -> squeeze
with graph.inserting_before(node):
input_node = node.args[0]
unsqueeze_before = create_node(
graph, exir_ops.edge.aten.unsqueeze_copy.default
)
unsqueeze_before.args = (
input_node, # Input is node's original input
-1, # Last Dimension
)
node.replace_input_with(input_node, unsqueeze_before)

# If Quantized we must insert unsqueeze --> q --> dq --> node
if input_node.target == dq_op:
q_params = input_node.args[1:]
insert_q_dq_pair(graph, unsqueeze_before, q_params)

with graph.inserting_after(node):
squeeze_after = create_node(
graph,
exir_ops.edge.aten.squeeze_copy.dims,
)
squeeze_after.args = (
node, # Input is the conv node
[-1], # Last dimension
)
original_users = [
user for user in node.users if user != squeeze_after
]
for user in original_users:
user.replace_input_with(node, squeeze_after)

# If quantized, insert conv2d --> q --> dq --> squeeze
if all(
original_user.target == q_op for original_user in original_users
):
q_params = original_users[0].args[1:]
insert_q_dq_pair(graph, node, q_params)

graph_module.recompile()
# Since we are overriding "call", we need to call the parent's "call"
# to retrace the graph and regenerate metadata
graph_module = super().call(graph_module).graph_module

return PassResult(graph_module, True)
1 change: 1 addition & 0 deletions backends/arm/_passes/convert_split_to_slice.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,4 +70,5 @@ def call(self, graph_module: torch.fx.GraphModule):
output_node.replace_all_uses_with(slice_node)
graph.eliminate_dead_code()
graph_module.recompile()
graph_module = super().call(graph_module).graph_module
return PassResult(graph_module, True)
Loading
Loading