Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
79 changes: 74 additions & 5 deletions scapy/fields.py
Original file line number Diff line number Diff line change
Expand Up @@ -435,15 +435,74 @@ def getfield(self, pkt, s):


class PacketListField(PacketField):
__slots__ = ["count_from", "length_from"]
""" PacketListField represents a series of Packet instances that might occur right in the middle of another Packet
field list.
This field type may also be used to indicate that a series of Packet instances have a sibling semantic instead of
a parent/child relationship (i.e. a stack of layers).
"""
__slots__ = ["count_from", "length_from", "next_cls_cb"]
islist = 1
def __init__(self, name, default, cls, count_from=None, length_from=None):
def __init__(self, name, default, cls=None, count_from=None, length_from=None, next_cls_cb=None):
""" The number of Packet instances that are dissected by this field can be parametrized using one of three
different mechanisms/parameters:
* count_from: a callback that returns the number of Packet instances to dissect. The callback prototype is:
count_from(pkt:Packet) -> int
* length_from: a callback that returns the number of bytes that must be dissected by this field. The
callback prototype is:
length_from(pkt:Packet) -> int
* next_cls_cb: a callback that enables a Scapy developer to dynamically discover if another Packet instance
should be dissected or not. See below for this callback prototype.

The bytes that are not consumed during the dissection of this field are passed to the next field of the current
packet.

For the serialization of such a field, the list of Packets that are contained in a PacketListField can be
heterogeneous and is unrestricted.

The type of the Packet instances that are dissected with this field is specified or discovered using one of the
following mechanism:
* the cls parameter may contain a callable that returns an instance of the dissected Packet. This
may either be a reference of a Packet subclass (e.g. DNSRROPT in layers/dns.py) to generate an
homogeneous PacketListField or a function deciding the type of the Packet instance
(e.g. _CDPGuessAddrRecord in contrib/cdp.py)
* the cls parameter may contain a class object with a defined "dispatch_hook" classmethod. That
method must return a Packet instance. The dispatch_hook callmethod must implement the following prototype:
dispatch_hook(cls, _pkt:Optional[Packet], *args, **kargs) -> Packet_metaclass
The _pkt parameter may contain a reference to the packet instance containing the PacketListField that is
being dissected.
* the next_cls_cb parameter may contain a callable whose prototype is:
cbk(pkt:Packet, lst:List[Packet], cur:Optional[Packet], remain:str) -> Optional[Packet_metaclass]
The pkt argument contains a reference to the Packet instance containing the PacketListField that is
being dissected. The lst argument is the list of all Packet instances that were previously parsed during
the current PacketListField dissection, save for the very last Packet instance. The cur argument
contains a reference to that very last parsed Packet instance. The remain argument contains the bytes
that may still be consumed by the current PacketListField dissection operation. This callback returns
either the type of the next Packet to dissect or None to indicate that no more Packet are to be
dissected.
These four arguments allows a variety of dynamic discovery of the number of Packet to dissect and of the
type of each one of these Packets, including: type determination based on current Packet instances or
its underlayers, continuation based on the previously parsed Packet instances within that
PacketListField, continuation based on a look-ahead on the bytes to be dissected...

The cls and next_cls_cb parameters are semantically exclusive, although one could specify both. If both are
specified, cls is silently ignored. The same is true for count_from and next_cls_cb.
length_from and next_cls_cb are compatible and the dissection will end, whichever of the two stop conditions
comes first.

@param name: the name of the field
@param default: the default value of this field; generally an empty Python list
@param cls: either a callable returning a Packet instance or a class object defining a dispatch_hook class
method
@param count_from: a callback returning the number of Packet instances to dissect
@param length_from: a callback returning the number of bytes to dissect
@param next_cls_cb: a callback returning either None or the type of the next Packet to dissect.
"""
if default is None:
default = [] # Create a new list for each instance
PacketField.__init__(self, name, default, cls)
self.count_from = count_from
self.length_from = length_from

self.next_cls_cb = next_cls_cb

def any2i(self, pkt, x):
if not isinstance(x, list):
Expand All @@ -462,11 +521,14 @@ def do_copy(self, x):
else:
return [p if isinstance(p, bytes) else p.copy() for p in x]
def getfield(self, pkt, s):
c = l = None
c = l = cls = None
if self.length_from is not None:
l = self.length_from(pkt)
elif self.count_from is not None:
c = self.count_from(pkt)
if self.next_cls_cb is not None:
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You may want to use elif here.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

elif is not appropriate here, because length_from and next_cls_cb can be used concurrently. Using elif would prevent that. I could rewrite it like this, though:

if self.count_from(pkt) is not None:
    c = self.count_from(pkt)
else:
    if self.length_from is not None:
        l = self.length_from(pkt)
    if self.next_cls_cb is not None:
        cls = self.next_cls_cb(pkt, [], None, s)
        c = 1

Would you prefer this approach?

It is worth noting that this breaks compatibility with existing scripts that are specifying both count_from and length_from (although this is meaningless). Indeed, with the code in the master branch, length_from would be used and count_from would be ignored. With this proposal, count_from would be used and length_from would be ignored.

cls = self.next_cls_cb(pkt, [], None, s)
c = 1

lst = []
ret = b""
Expand All @@ -479,7 +541,10 @@ def getfield(self, pkt, s):
break
c -= 1
try:
p = self.m2i(pkt,remain)
if cls is not None:
p = cls(remain)
else:
p = self.m2i(pkt, remain)
except Exception:
if conf.debug_dissector:
raise
Expand All @@ -490,6 +555,10 @@ def getfield(self, pkt, s):
pad = p[conf.padding_layer]
remain = pad.load
del(pad.underlayer.payload)
if self.next_cls_cb is not None:
cls = self.next_cls_cb(pkt, lst, p, remain)
if cls is not None:
c += 1
else:
remain = b""
lst.append(p)
Expand Down
190 changes: 190 additions & 0 deletions test/fields.uts
Original file line number Diff line number Diff line change
Expand Up @@ -328,6 +328,196 @@ assert( str(a) == str(b) )
assert TCPOptionsField("test", "").getfield(TCP(dataofs=0), "") == ('', [])


############
############
+ PacketListField tests

= Create a layer
~ field lengthfield
class TestPLF(Packet):
name="test"
fields_desc=[ FieldLenField("len", None, count_of="plist"),
PacketListField("plist", None, IP, count_from=lambda pkt:pkt.len) ]

= Test the PacketListField assembly
~ field lengthfield
x=TestPLF()
str(x)
_ == "\x00\x00"

= Test the PacketListField assembly 2
~ field lengthfield
x=TestPLF()
x.plist=[IP()/TCP(), IP()/UDP()]
str(x)
_.startswith('\x00\x02E')

= Test disassembly
~ field lengthfield
x=TestPLF(plist=[IP()/TCP(seq=1234567), IP()/UDP()])
TestPLF(str(x))
_.show()
IP in _ and TCP in _ and UDP in _ and _[TCP].seq == 1234567

= Nested PacketListField
~ field lengthfield
y=IP()/TCP(seq=111111)/TestPLF(plist=[IP()/TCP(seq=222222),IP()/UDP()])
TestPLF(plist=[y,IP()/TCP(seq=333333)])
_.show()
IP in _ and TCP in _ and UDP in _ and _[TCP].seq == 111111 and _[TCP:2].seq==222222 and _[TCP:3].seq == 333333

= Complex packet
~ field lengthfield ccc
class TestPkt(Packet):
fields_desc = [ ByteField("f1",65),
ShortField("f2",0x4244) ]
def extract_padding(self, p):
return "", p

class TestPLF2(Packet):
fields_desc = [ FieldLenField("len1", None, count_of="plist",fmt="H", adjust=lambda pkt,x:x+2),
FieldLenField("len2", None, length_of="plist",fmt="I", adjust=lambda pkt,x:(x+1)/2),
PacketListField("plist", None, TestPkt, length_from=lambda x:(x.len2*2)/3*3) ]

a=TestPLF2()
str(a)
assert( _ == "\x00\x02\x00\x00\x00\x00" )

a.plist=[TestPkt(),TestPkt(f1=100)]
str(a)
assert(_ == '\x00\x04\x00\x00\x00\x03ABDdBD')

a /= "123456"
b = TestPLF2(str(a))
b.show()
assert(b.len1 == 4 and b.len2 == 3)
assert(b[TestPkt].f1 == 65 and b[TestPkt].f2 == 0x4244)
assert(b[TestPkt:2].f1 == 100)
assert(Raw in b and b[Raw].load == "123456")

a.plist.append(TestPkt(f1=200))
b = TestPLF2(str(a))
b.show()
assert(b.len1 == 5 and b.len2 == 5)
assert(b[TestPkt].f1 == 65 and b[TestPkt].f2 == 0x4244)
assert(b[TestPkt:2].f1 == 100)
assert(b[TestPkt:3].f1 == 200)
assert(b.getlayer(TestPkt,4) is None)
assert(Raw in b and b[Raw].load == "123456")
hexdiff(a,b)
assert( str(a) == str(b) )

= Create layers for heterogeneous PacketListField
~ field lengthfield
TestPLFH1 = type('TestPLFH1', (Packet,), {
'name': 'test1',
'fields_desc': [ByteField('data', 0)],
'guess_payload_class': lambda self, p: conf.padding_layer,
}
)
TestPLFH2 = type('TestPLFH2', (Packet,), {
'name': 'test2',
'fields_desc': [ShortField('data', 0)],
'guess_payload_class': lambda self, p: conf.padding_layer,
}
)
class TestPLFH3(Packet):
name = 'test3'
fields_desc = [
PacketListField(
'data', [],
next_cls_cb=lambda pkt, lst, p, remain: pkt.detect_next_packet(lst, p, remain)
)
]
def detect_next_packet(self, lst, p, remain):
if len(remain) < 3:
return None
if isinstance(p, type(None)):
return TestPLFH1
if p.data & 3 == 1:
return TestPLFH1
if p.data & 3 == 2:
return TestPLFH2
return None

= Test heterogeneous PacketListField
~ field lengthfield

p = TestPLFH3('\x02\x01\x01\xc1\x02\x80\x04toto')
assert(isinstance(p.data[0], TestPLFH1))
assert(p.data[0].data == 0x2)
assert(isinstance(p.data[1], TestPLFH2))
assert(p.data[1].data == 0x101)
assert(isinstance(p.data[2], TestPLFH1))
assert(p.data[2].data == 0xc1)
assert(isinstance(p.data[3], TestPLFH1))
assert(p.data[3].data == 0x2)
assert(isinstance(p.data[4], TestPLFH2))
assert(p.data[4].data == 0x8004)
assert(isinstance(p.payload, conf.raw_layer))
assert(p.payload.load == 'toto')

p = TestPLFH3('\x02\x01\x01\xc1\x02\x80\x02to')
assert(isinstance(p.data[0], TestPLFH1))
assert(p.data[0].data == 0x2)
assert(isinstance(p.data[1], TestPLFH2))
assert(p.data[1].data == 0x101)
assert(isinstance(p.data[2], TestPLFH1))
assert(p.data[2].data == 0xc1)
assert(isinstance(p.data[3], TestPLFH1))
assert(p.data[3].data == 0x2)
assert(isinstance(p.data[4], TestPLFH2))
assert(p.data[4].data == 0x8002)
assert(isinstance(p.payload, conf.raw_layer))
assert(p.payload.load == 'to')

= Create layers for heterogeneous PacketListField with memory
~ field lengthfield
TestPLFH4 = type('TestPLFH4', (Packet,), {
'name': 'test4',
'fields_desc': [ByteField('data', 0)],
'guess_payload_class': lambda self, p: conf.padding_layer,
}
)
TestPLFH5 = type('TestPLFH5', (Packet,), {
'name': 'test5',
'fields_desc': [ShortField('data', 0)],
'guess_payload_class': lambda self, p: conf.padding_layer,
}
)
class TestPLFH6(Packet):
__slots__ = ['_memory']
name = 'test6'
fields_desc = [
PacketListField(
'data', [],
next_cls_cb=lambda pkt, lst, p, remain: pkt.detect_next_packet(lst, p, remain)
)
]
def detect_next_packet(self, lst, p, remain):
if isinstance(p, type(None)):
self._memory = [TestPLFH4] * 3 + [TestPLFH5]
try:
return self._memory.pop(0)
except IndexError:
return None

= Test heterogeneous PacketListField with memory
~ field lengthfield

p = TestPLFH6('\x01\x02\x03\xc1\x02toto')
assert(isinstance(p.data[0], TestPLFH4))
assert(p.data[0].data == 0x1)
assert(isinstance(p.data[1], TestPLFH4))
assert(p.data[1].data == 0x2)
assert(isinstance(p.data[2], TestPLFH4))
assert(p.data[2].data == 0x3)
assert(isinstance(p.data[3], TestPLFH5))
assert(p.data[3].data == 0xc102)
assert(isinstance(p.payload, conf.raw_layer))
assert(p.payload.load == 'toto')


############
############
+ Tests on MultiFlagsField
Expand Down