-
Notifications
You must be signed in to change notification settings - Fork 75k
Closed
Labels
comp:kerasKeras related issuesKeras related issuesstaleThis label marks the issue/pr stale - to be closed automatically if no activityThis label marks the issue/pr stale - to be closed automatically if no activitystat:awaiting responseStatus - Awaiting response from authorStatus - Awaiting response from authortype:bugBugBug
Description
Issue Type
Bug
Source
binary
Tensorflow Version
tfnightly
Custom Code
Yes
OS Platform and Distribution
Linux Ubuntu 20.04
Mobile device
No response
Python version
3.9
Bazel version
No response
GCC/Compiler version
No response
CUDA/cuDNN version
No response
GPU model and memory
No response
Current Behaviour?
When I run the code snippet below (relu and BatchNormalization) for the first time, I encounter InternalError. Then I try to run it again and session crashes.
Standalone code to reproduce the issue
- Run for a single time: throws InternalError
import tensorflow as tf
import numpy as np
print(tf.__version__)
input_data = np.random.rand(1, 3, 3, 1).astype(np.float32)
output_data = tf.keras.activations.relu(
tf.keras.layers.BatchNormalization(axis=-1)(input_data))Log output:
2.11.0-dev20220919
InternalError: Exception encountered when calling layer 'batch_normalization' (type BatchNormalization).
{{function_node __wrapped__FusedBatchNormV3_device_/job:localhost/replica:0/task:0/device:GPU:0}} cuDNN launch failure : input shape ([1,3,3,1]) [Op:FusedBatchNormV3]
Call arguments received by layer 'batch_normalization' (type BatchNormalization):
• inputs=tf.Tensor(shape=(1, 3, 3, 1), dtype=float32)
• training=None- Run for a second time: crash
import tensorflow as tf
import numpy as np
try:
input_data = np.random.rand(1, 3, 3, 1).astype(np.float32)
output_data = tf.keras.activations.relu(
tf.keras.layers.BatchNormalization(axis=-1)(input_data))
except:
pass
input_data = np.random.rand(1, 3, 3, 1).astype(np.float32)
output_data = tf.keras.activations.relu(
tf.keras.layers.BatchNormalization(axis=-1)(input_data)) # crash here
Relevant logs:
F tensorflow/core/common_runtime/gpu/gpu_util.cc:386] CPU->GPU Memcpy failed
Metadata
Metadata
Assignees
Labels
comp:kerasKeras related issuesKeras related issuesstaleThis label marks the issue/pr stale - to be closed automatically if no activityThis label marks the issue/pr stale - to be closed automatically if no activitystat:awaiting responseStatus - Awaiting response from authorStatus - Awaiting response from authortype:bugBugBug